بخشی از متن:
این کتاب در مورد انرژیهای نو و بیوگاز در 392 صفحه و در قالب پی دی اف و شامل کتاب انرژیهای نو و بیوگاز،بیوگاز،بیومس،انرژیهای نو،انرژیهای تجدیدپذیر،biogas،بیو انرژی،تولید بیوگاز،دستگاههای تولید بیوگاز، و غیره می باشد.
مقدمه........1
1-سوخت : 8
1-2- سوخت ها و انواع آن در جهان: 8
2 -انرژی های فسیلی: 8
2-2- نفت خام و تاریخچه آن: 8
2-2- ترکیبات نفت.. 12
2-3- تاریخچه پیدایش و حفاری چاه های نفت در ایران. 13
2-4- منابع نفتی جهان. 14
2-5- نگاهی اجمالی به منابع نفتی چند کشور 15
3 -گاز طبیعی. 17
3-1- تاریخچه گاز طبیعی. 17
3-2- ترکیبات گاز طبیعی. 17
3-3- چرخه تولید و استخراج گاز طبیعی. 19
3-4- ذخایر گاز طبیعی جهان. 20
3-5- گاز طبیعی در ایران. 22
4 -زغال سنگ.. 24
4-1- تاریخچه پیدایش ذغال سنگ.. 24
4-2- ذغال سنگ در جهان. 26
4-3- ذغال سنگ در ایران. 28
5 -سوختهای فسیلی و اثرات زیست محیطی آن. 29
6 -ضرورت استفاده از انرژی های نوین: 29
6-1- انواع انرژیهای تجدید و میزان بهره برداری از آنها در جهان : 31
6-2- معرفی اجمالی انواع انرژی های نوین: 32
6-2-1-انرژی خورشیدی و ساختار آن00 32
6-3- کاربردهای انرژی خورشید. 34
6-4- استفاده از انرژی حرارتی خورشید. 34
6-4-1-کاربردهای نیروگاهی00000 34
6-4-2-نیروگاههای حرارتی خورشید از نوع سهموی خطی000 35
6-4-3-نیروگاههای حرارتی از نوع دریافت کننده مرکزی000 36
6-4-4- نیروگاههای حرارتی از نوع بشقابی000 37
6-4-5-دودکشهای خورشیدی0000000 37
6-4-5-1-مزایای نیروگاههای خورشیدی00 37
6-4-6-کاربردهای غیر نیروگاهی000 38
6-5- انرژی فتوولتائیک و ساختار آن. 41
6-5-1-1-ب-مصرف کننده با بار الکتریکی0000 43
6-5-2-مصارف و کاربردهای انرژی فتوولتائیک به طور مختصر از این قرارند:0000 43
6-6- انرژی باد 44
6-7- تاریخچه 45
6-8- برق بادی در مقیاسهای کوچک.. 49
6-8-1-استفاده از زمین برای ساخت توربین0000 49
6-9- بزرگترین توربین بادی جهان. 50
6-10- انرژی زمینگرمایی. 50
6-11- انواع فناوریهای تبدیل. 51
6-11-1-نیروگاههای بخار خشک000 51
6-11-2-نیروگاههای تبدیل به بخار سیال (Flash Steam)52
6-11-3-نیروگاه چرخه دوگانه0000 52
6-12- مزایای انرژی زمین گرمایی. 52
6-13- معایب انرژی زمین گرمایی. 53
6-14- نیروگاه زمین گرمایی در ایران. 54
6-15- انرژی جزر و مد. 54
6-16 نرژی امواج دریا 57
6-17- طبقه بندی امواج دریا 58
6-18 نیروی برقآبی. 59
6-19 زیستتوده 62
6-19-1-ساختار شیمیایی زیست توده0000 62
6-20- محدودیتهای انرژیهای تجدید پذیر 63
7 -معرفی بیوگاز. 64
7-1- تاریخچه تولید بیوگاز 67
7-2- منابع زیست توده جهت تولید بیوگاز 69
7-3- مهمترین منابع زیست توده که در تولید بیوگاز نقش دارند: 71
7-3-1-فضولات دامپروری :00000 71
7-3-2-ضایعات کشاورزی :000000 71
7-3-3-ضایعات صنایع غذایی0 73
7-3-4-پتانسیل تولید بیوگاز از مواد مختلف از این قرار است:000 74
7-3-5-چکیده پتانسیل تولید بیوگاز از زائدات کشاورزی در 35 درجه00 74
7-3-6-جدول مقایسه خواص برخی گازهای رایج با بیوگاز0000 0 75
7-3-7-جدول مقایسه بیوگاز با سایر مواد سوختی000000000 76
7-4- انواع واکنشها برای حذف مواد آلی: 78
7-5- اصول هضم بی هوازی: 79
7-6- مراحل و واکنش های تولید بیوگاز: 84
7-7- دلایل ارجحیت بیوگاز به سایر انرژیهای تجدید پذیر: 89
7-8- معایب سیستم بیوگاز: 100
7-9- پارامترهای مؤثر بر فرآیند هضم بی هوازی و تولید بیوگاز: 101
7-10- بیوگاز و کود حاصله از آن: 113
7-11- برخی از خصوصیات کود بیوگازی: 114
7-12- مراحل ساخت واحد بیوگاز با تمام جزئیات آن: 120
7-12-1-روش های انجام آزمایش:0000 121
7-12-2-آیتمهایی که باید در طول زمان آزمایش اندازه گیری و بررسی شوند؟000 122
7-13- مرداب های مصنوعی. 129
7-14- تولید انرژی. 130
7-15- بیوگاز و برق حاصل از آن: 131
7-16- مزایای بیوگاز: 134
7-16-1-امنیت انرژی 135
7-16-2بیوگاز همچنین دارای منافع عمومی زیر می باشد: 136
8 -لندفیل. 141
8-1- پسماند چیست؟ 143
8-2- فرآیند تولید بیوگاز در لندفیل. 148
8-3- ساختار کلی لندفیل های مدرن. 149
8-4- تکنیکهای مختلف جمع آوری گاز لندفیل ها 150
8-5- طراحی گودالهای دفن زباله 154
8-6- سیستمهای جمع آوری گاز غیرفعال: 158
8-7- طرح مناسب لندفیل ها 159
8-8- فراورده های جانبی لندفیل: 160
هزینه احداث لندفیل. 160
9 -بیومس.. 152
9-1- معرفی بیومس: 152
9-2- فرآیندهای تبدیل انرژی بیومس و کاربرد های آنها: 157
9-3- روشهای تبدیل بیومس به انرژی قابل استفاده: 158
9-4- انواع نیروگاههای بیومس: 159
10 -بیوگاز در جهان. 152
10-1- کره 157
10-2- چین. 158
10-3- پاکستان. 162
10-4- نیجریه 162
10-5- ژاپن. 163
10-6- سوئد. 164
10-7- فیلیپین. 165
10-8- گواتما 166
10-9- انگلیس.. 167
10-10- برزیل. 167
10-11- آلمان. 168
10-12- نروژ 169
10-13- ایران. 170
11 -انرژی و وضعیت آن در ایران. 152
11-1- چگونگی توزیع مصرف انرژی در ایران. 195
11-2 وضعیت و پتانسیل های فعلی توزیع انواع حامل های انرژی. 196
11-3 مزایای تدوین طرح جامع انرژی. 197
12 - نگاهی به تاریخچة بیوگاز در ایران. 201
12-1- تحقیقات انجام شده در ایران در زمینه بیوگاز: 203
12-2- پتانسیل تولید بیوگاز در ایران. 203
12-3- بیوگاز را می توان از تخمیر سه گونه زیست توده بدست آورد: 204
12-4- منابع تولید بیوگاز 207
12-5- اولویتهای استفاده از بیوگاز در ایران. 208
12-6- عوامل بازدارنده در گسترش فنآوریهای تولید بیوگاز در ایران. 209
12-7- علل و ضرورت امکان استفاده از بیوگاز در ایران: 212
12-8- استفاده بهینه از دستگاههای بیوگاز در ایران. 213
12-9 پیشنهاداتی برای سیاست گزاری. 214
12-10- مزایای بیوگاز 215
12-11- محدودیت ها 218
12-12- نتیجه گیری. 218
13 -فناوری بیوگاز در مقیاس شهری. 221
13-1- رآکتورهای بی هوازی. 222
13-2- بازیابی فاضلاب. 226
13-2-1-1-آرایش اصلی دستگاه های بیوگاز00 228
13-3- طراحی دستگاه های بیوگاز: 228
13-4- قسمتهای مختلف یک سایت بیوگاز 230
13-5- ساختار کلی دستگاههای تولید بیوگاز: 231
13-6- جاذب های بیوگاز 233
13-7- حوضچه ورودی: 234
13-8- حوضچه خروجی: 235
13-9- تانک تخمیر 236
13-10- محفظه گاز: 238
13-11- انواع راکتورها 242
13-11-1-راکتور آزمایشگاهی:000 242
13-11-2-راکتور نیمه صنعتی:000000 242
13-12- دوام و بقا : 243
13-13- طرح ریزی دستگاه های بیوگاز: 244
13-14- جاذب های افقی. 248
13-15- دستگاه مشترک بیوگاز 248
13-16- جاذب عمودی استاندارد کشاورزی. 249
13-17- جاذب عمومی بزرگ: 250
13-18- دستگاه بیوگاز با سرپوش گاز و مخزن تخمیری به صورت واحد و با حجم ثابت (مدل چینی) : 251
13-19- دستگاه های چینی بیو گازی با قبه –ثابت: 254
13-20- دستگاه بیوگاز با سرپوش شناور (مدل هندی) 257
13-21- دستگاه بیوگاز در مدل تایوانی. 264
13-22- واحدهای بالونی: 264
13-23- دستگاه بیوگاز نوع فرانسوی. 265
13-24- دستگاه بیوگاز با لوله های چرمی. 266
13-25- دستگاه بیوگازی با کیسه ی پلی اتیلن. 268
13-26- انواع واحدهای ساخته شده در ایران. 269
13-27- در یک تقسیم بندی دیگر دستگاههای بیوگاز به دو گروه تقسیم می شوند: 271
13-28- انواع هاضمهای بیهوازی. 272
13-28-1-ناپیوسته:(Batch).......... 272
3-28-2-پیوسته:(Continious)0 272
13-28-3-نیمه پیوسته continious) :(Semi000000 272
13-29- بارگیری (loading): استفاده از سیستم بیوگاز و دستگاه تخمیر به دو صورت انجام می گیرد: 273
13-29-1-سیستم بسته (bach type ):0 273
13-29-2-سیستم پیوسته (continues type ) :00000 274
13-30- طراحی سیستم تولید بیوگاز: 275
3-30-1-حوضچه رسوب:00000000 275
13-30-2-هاضم:0000 275
13-30-3-مخزن گاز:000000 275
13-30-4-ابعاد مخزن گاز:0000000000 276
13-30-5-استفاده از گاز تولیدی:0000 276
13-31- معرفی بخشهای مختلف نیروگاه بیوگازی. 277
13-31-1-بخش تفکیک زباله و تامین پسماندهای آلی 000 277
13-31-2-واحد هضم بیهوازی و تولید بیوگاز00000000 277
13-31-3-واحد تولید برق و حرارت0000 278
13-31-4-سایر واحدها0000 278
13-32 مقیاس سیستمهای بیوگاز 279
13-32-1-سیستم بیوگاز خانگی )کوچک(0000000 279
13-32-2-سیستم بیوگاز متوسط00000000 280
13-32-3-سستم بیوگاز بزرگ00000000 281
14 -جمع آوری گاز و کاربردهای آن. 283
14-1- وسایل تعیین حجم گاز تولیدی و آنالیز بیوگاز 284
14-2-جداسازی انواع ناخالصی ها از گاز زیستی. 284
14-2-1-سولفورزدایی :000 284
14-2-2-رطوبت گیری:0000000 287
14-2-3-زدودن دی اکسید کربن :000 287
14-2-4-فشرده سازی گاز تولیدی 000000 287
14-3- گازی که از دستگاه هاضم حاصل می گردد دارای مصارف و کاربردهای زیادی می باشد از جمله:287
14-4- سوخت خانگی. 292
14-5- مصرف وسایل مختلف در یک خانه روستایی مدرن به قرار زیر ارزیابی می شود: 293
مقدمه.........1
1-سوخت : 8
1-2- سوخت ها و انواع آن در جهان: 8
2 -انرژی های فسیلی: 8
2-2- نفت خام و تاریخچه آن: 8
2-2- ترکیبات نفت.. 12
2-3- تاریخچه پیدایش و حفاری چاه های نفت در ایران. 13
2-4- منابع نفتی جهان. 14
2-5- نگاهی اجمالی به منابع نفتی چند کشور 15
3 -گاز طبیعی. 17
3-1- تاریخچه گاز طبیعی. 17
3-2- ترکیبات گاز طبیعی. 17
3-3- چرخه تولید و استخراج گاز طبیعی. 19
3-4- ذخایر گاز طبیعی جهان. 20
3-5- گاز طبیعی در ایران. 22
4 -زغال سنگ.. 24
4-1- تاریخچه پیدایش ذغال سنگ.. 24
4-2- ذغال سنگ در جهان. 26
4-3- ذغال سنگ در ایران. 28
5 -سوختهای فسیلی و اثرات زیست محیطی آن. 29
6 -ضرورت استفاده از انرژی های نوین: 29
6-1- انواع انرژیهای تجدید و میزان بهره برداری از آنها در جهان : 31
6-2- معرفی اجمالی انواع انرژی های نوین: 32
6-2-1-انرژی خورشیدی و ساختار آن00 32
6-3- کاربردهای انرژی خورشید. 34
6-4- استفاده از انرژی حرارتی خورشید. 34
6-4-1-کاربردهای نیروگاهی0000 34
6-4-2-نیروگاههای حرارتی خورشید از نوع سهموی خطی000000 35
6-4-3-نیروگاههای حرارتی از نوع دریافت کننده مرکزی000000 36
6-4-4- نیروگاههای حرارتی از نوع بشقابی0000000 37
6-4-5-دودکشهای خورشیدی00000 37
6-4-5-1-مزایای نیروگاههای خورشیدی0000 37
6-4-6-کاربردهای غیر نیروگاهی000000 38
6-5- انرژی فتوولتائیک و ساختار آن. 41
6-5-1-1-ب-مصرف کننده با بار الکتریکی000000 43
6-5-2-مصارف و کاربردهای انرژی فتوولتائیک به طور مختصر از این قرارند:000 43
6-6- انرژی باد 44
6-7- تاریخچه 45
6-8- برق بادی در مقیاسهای کوچک.. 49
6-8-1-استفاده از زمین برای ساخت توربین0000 49
6-9- بزرگترین توربین بادی جهان. 50
6-10- انرژی زمینگرمایی. 50
6-11- انواع فناوریهای تبدیل. 51
6-11-1-نیروگاههای بخار خشک0000 51
6-11-2-نیروگاههای تبدیل به بخار سیال (Flash Steam)0 52
6-11-3-نیروگاه چرخه دوگانه000 52
6-12- مزایای انرژی زمین گرمایی. 52
6-13- معایب انرژی زمین گرمایی. 53
6-14- نیروگاه زمین گرمایی در ایران. 54
6-15- انرژی جزر و مد. 54
6-16 نرژی امواج دریا 57
6-17- طبقه بندی امواج دریا 58
6-18 نیروی برقآبی. 59
6-19 زیستتوده 62
6-19-1-ساختار شیمیایی زیست توده000 62
6-20- محدودیتهای انرژیهای تجدید پذیر 63
7-معرفی بیوگاز. 64
7-1- تاریخچه تولید بیوگاز 67
7-2- منابع زیست توده جهت تولید بیوگاز 69
7-3- مهمترین منابع زیست توده که در تولید بیوگاز نقش دارند: 71
7-3-1-فضولات دامپروری :00000 71
7-3-2-ضایعات کشاورزی :00000 71
7-3-3-ضایعات صنایع غذایی0 73
7-3-4-پتانسیل تولید بیوگاز از مواد مختلف از این قرار است:00000 74
7-3-5-چکیده پتانسیل تولید بیوگاز از زائدات کشاورزی در 35 درجه0 74
7-3-6-جدول مقایسه خواص برخی گازهای رایج با بیوگاز0 0 75
7-3-7-جدول مقایسه بیوگاز با سایر مواد سوختی000 76
7-4- انواع واکنشها برای حذف مواد آلی: 78
7-5- اصول هضم بی هوازی: 79
7-6-مراحل و واکنش های تولید بیوگاز: 84
7-7- دلایل ارجحیت بیوگاز به سایر انرژیهای تجدید پذیر: 89
7-8- معایب سیستم بیوگاز: 100
7-9- پارامترهای مؤثر بر فرآیند هضم بی هوازی و تولید بیوگاز: 101
7-10- بیوگاز و کود حاصله از آن: 113
7-11- برخی از خصوصیات کود بیوگازی: 114
7-12- مراحل ساخت واحد بیوگاز با تمام جزئیات آن: 120
7-12-1-روش های انجام آزمایش:0000 121
7-12-2-آیتمهایی که باید در طول زمان آزمایش اندازه گیری و بررسی شوند؟00000 122
7-13- مرداب های مصنوعی. 129
7-14- تولید انرژی. 130
7-15- بیوگاز و برق حاصل از آن: 131
7-16- مزایای بیوگاز: 134
7-16-1-امنیت انرژی 135
7-16-2بیوگاز همچنین دارای منافع عمومی زیر می باشد: 136
8 -لندفیل. 141
8-1- پسماند چیست؟ 143
8-2- فرآیند تولید بیوگاز در لندفیل. 148
8-3- ساختار کلی لندفیل های مدرن. 149
8-4- تکنیکهای مختلف جمع آوری گاز لندفیل ها 150
8-5- طراحی گودالهای دفن زباله 154
8-6- سیستمهای جمع آوری گاز غیرفعال: 158
8-7- طرح مناسب لندفیل ها 159
8-8- فراورده های جانبی لندفیل: 160
هزینه احداث لندفیل. 160
9 -بیومس.. 152
9-1- معرفی بیومس: 152
9-2- فرآیندهای تبدیل انرژی بیومس و کاربرد های آنها: 157
9-3- روشهای تبدیل بیومس به انرژی قابل استفاده: 158
9-4- انواع نیروگاههای بیومس: 159
10 -بیوگاز در جهان. 152
10-1- کره 157
10-2- چین. 158
10-3- پاکستان. 162
10-4- نیجریه 162
10-5- ژاپن. 163
10-6- سوئد. 164
10-7- فیلیپین. 165
10-8- گواتما 166
10-9- انگلیس.. 167
10-10- برزیل. 167
10-11- آلمان. 168
10-12- نروژ 169
10-13- ایران. 170
11 -انرژی و وضعیت آن در ایران. 152
11-1- چگونگی توزیع مصرف انرژی در ایران. 195
11-2 وضعیت و پتانسیل های فعلی توزیع انواع حامل های انرژی. 196
11-3 مزایای تدوین طرح جامع انرژی. 197
12 - نگاهی به تاریخچة بیوگاز در ایران. 201
12-1- تحقیقات انجام شده در ایران در زمینه بیوگاز: 203
12-2- پتانسیل تولید بیوگاز در ایران. 203
12-3- بیوگاز را می توان از تخمیر سه گونه زیست توده بدست آورد: 204
12-4- منابع تولید بیوگاز 207
12-5- اولویتهای استفاده از بیوگاز در ایران. 208
12-6- عوامل بازدارنده در گسترش فنآوریهای تولید بیوگاز در ایران. 209
12-7- علل و ضرورت امکان استفاده از بیوگاز در ایران: 212
12-8- استفاده بهینه از دستگاههای بیوگاز در ایران. 213
12-9 پیشنهاداتی برای سیاست گزاری. 214
12-10- مزایای بیوگاز 215
12-11- محدودیت ها 218
12-12- نتیجه گیری. 218
13 -فناوری بیوگاز در مقیاس شهری. 221
13-1- رآکتورهای بی هوازی. 222
13-2- بازیابی فاضلاب. 226
13-2-1-1-آرایش اصلی دستگاه های بیوگاز0000000 228
13-3- طراحی دستگاه های بیوگاز: 228
13-4- قسمتهای مختلف یک سایت بیوگاز 230
13-5- ساختار کلی دستگاههای تولید بیوگاز: 231
13-6- جاذب های بیوگاز 233
13-7- حوضچه ورودی: 234
13-8- حوضچه خروجی: 235
13-9- تانک تخمیر 236
13-10- محفظه گاز: 238
13-11- انواع راکتورها 242
13-11-1-راکتور آزمایشگاهی:0242
13-11-2-راکتور نیمه صنعتی: 242
13-12- دوام و بقا : 243
13-13- طرح ریزی دستگاه های بیوگاز: 244
13-14- جاذب های افقی. 248
13-15- دستگاه مشترک بیوگاز 248
13-16- جاذب عمودی استاندارد کشاورزی. 249
13-17- جاذب عمومی بزرگ: 250
13-18- دستگاه بیوگاز با سرپوش گاز و مخزن تخمیری به صورت واحد و با حجم ثابت (مدل چینی) : 251
13-19- دستگاه های چینی بیو گازی با قبه –ثابت: 254
13-20- دستگاه بیوگاز با سرپوش شناور (مدل هندی) 257
13-21- دستگاه بیوگاز در مدل تایوانی. 264
13-22- واحدهای بالونی: 264
13-23- دستگاه بیوگاز نوع فرانسوی. 265
13-24- دستگاه بیوگاز با لوله های چرمی. 266
13-25- دستگاه بیوگازی با کیسه ی پلی اتیلن. 268
13-26- انواع واحدهای ساخته شده در ایران. 269
13-27- در یک تقسیم بندی دیگر دستگاههای بیوگاز به دو گروه تقسیم می شوند: 271
13-28- انواع هاضمهای بیهوازی. 272
13-28-1-ناپیوسته:(Batch)............... 272
13-28-2-پیوسته:(Continious)00 272
13-28-3-نیمه پیوسته continious) :(Semi000000 272
13-29- بارگیری (loading): استفاده از سیستم بیوگاز و دستگاه تخمیر به دو صورت انجام می گیرد: 273
13-29-1-سیستم بسته (bach type ):273
13-29-2-سیستم پیوسته (continues type ) : 274
13-30- طراحی سیستم تولید بیوگاز: 275
13-30-1-حوضچه رسوب:0 275
13-30-2-هاضم:000 275
13-30-3-مخزن گاز:000000 275
13-30-4-ابعاد مخزن گاز:0 276
13-30-5-استفاده از گاز تولیدی:0000 276
13-31- معرفی بخشهای مختلف نیروگاه بیوگازی. 277
13-31-1-بخش تفکیک زباله و تامین پسماندهای آلی 000000 277
13-31-2-واحد هضم بیهوازی و تولید بیوگاز000000 277
13-31-3-واحد تولید برق و حرارت0000000 278
13-31-4-سایر واحدها0000 278
13-32 مقیاس سیستمهای بیوگاز 279
13-32-1-سیستم بیوگاز خانگی )کوچک(000000000 279
13-32-2-سیستم بیوگاز متوسط000000 280
13-32-3-سستم بیوگاز بزرگ0000000 281
14 -جمع آوری گاز و کاربردهای آن. 283
14-1- وسایل تعیین حجم گاز تولیدی و آنالیز بیوگاز 284
14-2-جداسازی انواع ناخالصی ها از گاز زیستی. 284
14-2-1-سولفورزدایی :0000 284
14-2-2-رطوبت گیری:00 287
14-2-3-زدودن دی اکسید کربن :000000 287
14-2-4-فشرده سازی گاز تولیدی 0000000000 287
14-3- گازی که از دستگاه هاضم حاصل می گردد دارای مصارف و کاربردهای زیادی می باشد از جمله: 287
14-4- سوخت خانگی. 292
14-5- مصرف وسایل مختلف در یک خانه روستایی مدرن به قرار زیر ارزیابی می شود: 293
بخشی از متن:
این کتاب مجموعه مقالات تولید بیوگاز، در 274 صفحه و تعداد 15 مقاله در مورد بیوگاز و تولید آن در قالب ورد و شامل کتاب مجموعه مقالات تولید بیوگاز،بیوگاز،بیوگاز،بیومس،انرژیهای نو،انرژیهای تجدیدپذیر،biogas،بیو انرژی،تولید بیوگاز،دستگاههای تولید بیوگاز،biogas،بیو انرژی،تولید بیوگاز،دستگاههای تولید بیوگاز، و غیره می باشد.
فهرست
پسماند چیست؟. 174
فرآیند تولید بیوگاز در لندفیل.. 177
ساختار کلی لندفیل های مدرن. 177
تکنیکهای مختلف جمعآوری گاز لندفیل.. 178
طراحی گودالهای دفن زباله 181
سیستمهای جمعآوری گاز غیرفعال 183
طرح مناسب لندفیلها 184
فراوردههای جانبی لندفیل.. 184
نتایج. 185
1-1- عوامل بازدارنده در گسترش فنآوریهای تولید بیوگاز در ایران. 190
پسماند چیست؟. 197
فرآیند تولید بیوگاز در لندفیل.. 200
ساختار کلی لندفیل های مدرن. 201
تکنیکهای مختلف جمعآوری گاز لندفیل.. 202
طراحی گودالهای دفن زباله 204
سیستمهای جمعآوری گاز غیرفعال 206
طرح مناسب لندفیلها 207
فراوردههای جانبی لندفیل.. 208
نتایج. 208
1-1-1- 212
1-2- 3- مراحل شیمیائی تخمیر مواد آلی (شامل چربیها، هیدراتهای کربن و پروتئینها). 212
1-2-1- 3-1- تخمیر چربیها 212
1-2-2- 3-2- تخمیر هیدراتهای کربن 213
1-2-3- 3-3- تخمیر پروتئینها 213
1-2-4- 214
1-2-5- 267
1-3- 3- مراحل شیمیائی تخمیر مواد آلی (شامل چربیها، هیدراتهای کربن و پروتئینها) 267
1-3-1- 3-1- تخمیر چربیها 267
1-3-2- 3-2- تخمیر هیدراتهای کربن 268
1-3-3- 3-3- تخمیر پروتئینها 268
1-3-4- 269
3- فناوری بیوگاز. 274
4- ساختار کلی دستگاه تولید بیوگاز: 276
9- نتایج. 279
1-4- بیوگاز چیست؟. 286
پسماند چیست؟. 367
فرآیند تولید بیوگاز در لندفیل.. 370
ساختار کلی لندفیل های مدرن. 371
تکنیکهای مختلف جمعآوری گاز لندفیل.. 372
طراحی گودالهای دفن زباله 374
سیستمهای جمعآوری گاز غیرفعال 376
طرح مناسب لندفیلها 377
فراوردههای جانبی لندفیل.. 378
نتایج. 378
روند تولید بیوگاز در جهان
چکیده
در ده سال اخیر بعلت کمبود انرژی و افزایش قیمت آن در کشورهای وارد کننده مواد سوختی مورد توجه خاص قرار گرفته است. در حال حاضر رشد مصرف انرژی در جهان سه برابر رشد جمعیت است. بشر برای بدست آوردن رفاه بیشتر، نیاز به انرژی بیشتری دارد. افزایش قیمت منابع انرژی تجدیدناپذیر (فسیلی) از دهه 1970 به بعد، همچنین محدودیت و مخاطرات زیست محیطی (برهم زدن تعادل گرمایی جو زمین و ...)، توجه بسیاری از محققان در سراسر جهان را به منابع انرژی تازه معطوف کرده است. منابعی که احیاپذیر بوده و مخاطرات زیستمحیطی کمتری را داشته باشند. انرژیهای نوین با ساختاری متفاوت از انرژیهای فسیلی، باعث تحولی عظیم در استفاده از انرژی شدهاند. در این میان، با توجه به رشد فزاینده نیاز و تقاضا برای انرژی (هر ده سال دو برابر میشود)، تلاش برای یافتن منابع جانشین انرژی امری ضروری است. بیوگاز حاصل از زیستتوده از مهمترین انرژیهای نوین میباشد. امروزه ازدیاد روزافزون مواد زائد و تولید انرژی از این مواد با توجه به سهولت فناوری و اقتصادی بودن این منابع سبب گردیده است تا توسعه آنها در بسیاری از کشورهای جهان، به صورت یک فناوری صنعتی مورد استفاده قرار گیرد. در خصوص تخریب لایه ازن که اکنون مسئله روز جهانی شده است، گفته میشود که در سطح جهان سالیانه حدود 40 میلیون تن گاز متان تنها از زبالههای شهری خود به خود تولید شده و در جو زمین پراکنده میگردد که جمعآوری و سوخت آنها به صورت مناسب به خوبی امکانپذیر است. بعضی از کشورهای جهان برای حل مشکل یاد شده و نیز برای توزیع نوین سوخت به مناطق روستایی به استفاده علمی از انرژی زیستی از طریق تولید بیوگاز از مواد مختلف اقداماتی انجام داده اند. از جمله این کشورها می توان هلند، ایتالیا، چین، کره شمالی، پاکستان، هندوستان و نپال را نام برد.به دنبال اهداف فوق، بیشتر کشورهای جهانسوم و همچنین، اغلب کشورهای صنعتی به بهرهبرداری از سیستمهای بیوگاز برآمدهاند. در این مقاله روند پیشرفت بیوگاز در قرن اخیر مورد مطالعه قرار گرفته است.
کلیدواژه: انرژی، بیوگاز، زباله زیستی، جهان، منابع جانشین
مقدمه
در طی قرن دهم قبل از میلاد مسیح در آشور و در قرن شانزدهم در ایران از بیوگاز برای گرم کردن آب جهت حمام و شستشوی بدن استفاده میشد. در سال 1776 میلادی الکساندر ولتا نتیجه گرفت که بین مقدار مواد آلی فسادپذیر و میزان گاز قابل اشتعال رابطه مستقیمی وجود دارد (عبدلی، 1364). در سال 1859 اولین واحد تخمیر بیهوازی در بمبئی هند ساخته شد. در سال 1860 میلادی اولین واحد استفاده شده برای تصفیه مواد جامد فاضلاب بوسیله شخصی به نام اچ ـ موراس بکار گرفته شد (نجفپور، 1374). در اروپا برخی واحدهای بیوگاز بیشتر از20 سال است که مشغول به کار هستند. در حال حاضر بیش از600 واحد هاضم در اروپا مشغول بکار میباشند و تنها در کشور آلمان در حدود250 واحد بیوگاز، طی پنج سال گذشته نصب شده است. از نیمه اول قرن بیستم در بسیاری از کشورها ساخت دستگاههای تولید کننده بیوگاز و استفاده از گاز حاصله آن به منظور پخت و پز، تأمین روشنایی و بکار انداختن موتورهای احتراقی وسایل نقلیه به سرعت توسعه یافت (ثقفی، 1382). در این بین کشورهای چین و هند بیش از سایر کشورهای دیگر به ساخت و بهرهبرداری از دستگاههای تولیدکننده بیوگاز پرداختهاند (سالک، 1373). بیش از نیمقرن پیش در تصفیهخانههای فاضلابهای شهری در اروپا استفاده از گاز متان حاصل از تخمیر مواد بیولوژیکی مطرح بود؛ اما استفاده از بیوگاز بصورت متداول از جنگ جهانی دوم به بعد مطرح شد. اهمیت و توسعه بیوگاز در جهان طی سالهای اخیر بسیار مورد توجه قرار گرفته است. به عنوان مثال تعداد این دستگاهها در چین از سال 1920 تا سال 1985 بالغ بر هفت میلیون برآوردگردیده که نیازهای انرژی پنجاه میلیون روستایی را بر طرف مینماید. درکشور امریکا بیش از 400 ژنراتور بزرگ و کوچک بیوگاز برای مصارف خانگی و صنعتی از انرژی بیوگاز استفاده مینماید (عمرانی، 1375).
تعداد هاضمهای کوچک و متوسط مورد استفاده در سطح جهان در سال 2005 از 25 میلیون واحد فراتر رفته و دهها هزار واحد بزرگ بویژه در اروپا و آمریکا نصب شده است. دامداریها، مجتمعهای کشاورزی و تقریباً تمام تصفیهخانههای فاضلاب کشورهای اروپای غربی موظف به استفاده از هاضمهای بیهوازی و واحدهای بیوگازی شدهاند (جدول 1).
جدول 1- تعداد واحدهای بیوگاز ساخته شده در کشورهای مختلف
راندمان مناسب فرآیند هضم بیهوازی در حل معضل زبالهها و تولید انرژی باعث توجه کشورهای اروپایی نظیر دانمارک، سوئد، فرانسه، آلمان، هلند، ایتالیا، انگلستان و ... به استفاده و توسعة این فناوری شده است (ثقفی، 1382). علاوه بر کشورهای اروپایی، کشورهای آمریکایی و آفریقایی هم به منظور تأمین بخشی از انرژی خود، استفاده از فرآیند هضم بیهوازی را مد نظر قراردادهاند. آمریکا از جمله کشورهایی است که تمایل زیادی به استفاده از نیروگاههای بیوگازی صنعتی نشان داده است. هاضمهای موجود در آمریکا اکثراً دارای حجمهای بالا با قابلیتهای کاربرد متنوع برای استفاده از فاضلاب و زبالههای شهری، فاضلاب صنعتی، فضولات دامی و زائدات کشاورزی ساخته شدهاند. آمریکا علاوه بر توجه به کاربرد بیوگاز، در مبحث تحقیقات بیوگازی نیز از کشورهای پیشتاز در جهان میباشد. در سا ل 2003 پروژه (MEAD) توسعه بیوگاز در آمریکا را شتاب قابل توجهی بخشید (سالک، 1373). افزایش مواد زائد در جهان اعم از مایع یا جامد و تولید بیوگاز از این مواد، با توجه به سهولت فناوری و ساخت دستگاه تولید بیوگاز در شرایط بیهوازی سبب شده است که تولید و مصرف آن در بسیاری ازکشورها به دو صورت (صنعتی وسنتی) مورد توجه قرار گیرد. کشورهای هند و چین در دهه 1930 میلادی، به طور وسیع به ساخت دستگاههای بیوگاز اقدام نمودند (نجفپور، 1374).
در کشورهاى اروپاى غربى و جنوب شرقى آسیا فناورى تولید انرژى از بیوگاز بسیار قابل توجه است. در میان کشورهاى اروپایى به کشور سوئد مىتوان اشاره کرد که در زمره بهترین مصرف کنندگان این نوع از انرژى در صنعت حمل و نقل به حساب مىآید. صنعت بیوگاز در کشورهای آسیای جنوب شرقی، در سطح بسیار وسیعی پیاده شده است و موفقیتهای چشمگیری نیز داشته است (ثقفی، 1382).
اغلب کشورهای پیشرفته طرحهای بزرگی در زمینه استفاده از بیوگاز در مناطق روستایی به مرحله اجرا گذاشتهاند. به عنوان مثال، در کشور چین800 میلیون روستایی80 % انرژی مورد نیاز روزانه خود را از منابع زیستی به دست میآورند؛ در غیر این صورت طبق برآوردها سالانه باید حدود500-400 میلیون تن چوب و شاخ و برگ در مناطق روستایی سوزانده شود. ذکر این نکته ضروری است که انرژی حرارتی ناشی از سوختن بیوگاز تولید شده از منابعی همچون چوب و... در مقایسه با سوزاندن مستقیم آنها30-40% افزایش نشان میدهد. امروزه نصف جمعیت جهان برای استفادههای گرمایی و آشپزی از چوب استفاده میکنند و مصرف چوب سالانه حدود۲ الی ۳ درصد افزایش مییابد (نجفپور، 1374). درسال۱۹۹۰ مصرف چوب، درحدود ۲ میلیارد متر مکعب (حدود۱۰ میلیون بشکه در روز معادل نفت) بوده است. منابع انرژی بیومس (زیستتوده) را میتوان با استفاده از روشهای جدید مهندسی ژنتیک گسترش داد. راههایی نیز وجود دارد که از آنها میتوان برای بالابردن کیفیت سوخت استفاده کرد، مانند تبدیل چوب به زغال، زباله چوب و خاک اره را هم از طریق فشردن و شکل دادن، به صورت قالب(Pellet) در میآورند. درآمریکای شمالی و اروپا از این قبیل سوختهای جامد در صنایع استفاده میشود (سالک، 1373).
بیشتر کشورهای دنیا برنامهریزی گستردهای برای تأمین انرژی مورد نیاز خود از طریق انرژیهای نو انجام دادهاند. با توجه به روند کنونی، کشورهای اروپایی به دنبال توصیه اتحادیه اروپا، به سمت استفاده از انرژیهای جانشین و تجدیدپذیر، تا سال۲۰۳۰ میلادی حدود ۱۵ درصد از مجموع انرژی مورد نیاز خود را از طریق انرژیهای تجدیدپذیر، تأمین خواهند کرد. دنیای امروز نیاز مبرم می داند که توجه زیادی برای تولید و استفاده از بیوگاز نشان دهد. اغلب کشورهای پیشرفته طرحهای بزرگی در این زمینه به مرحله اجرا گذاشتهاند، درکشورهای اسکاندیناوی طرحهای بزرگ صنعتی با استفاده از بیوگاز، راهاندازی شده است. کشور سوئد تا سال۲۰۵۰ میلادی، ۴۰% از بازار خودرو خود را به استفاده از بیوگاز مجهز میکند که آن را از فرایند سینیتیک بر روی چوب تأمین میکند. در کشور انگلیس آییننامه کاربرد سوختهای تجدیدپذیر در ترابری این کشور، برای شرکتهای دستاندر کار فعالیتهای انرژی مانند، شرکتهای نفتی، مؤسسات واردکننده نفت و گاز و دیگر نهادهای عرضه کننده سوخت، لازمالاجرا خواهد بود. استفاده از بیوگاز در اغلب کشورهای جنوب شرقی آسیا که با مشکل سوخت فسیلی مواجه هستند، وجود دارد (نجفپور، 1374). از این سیستم برای سه منظور استفاده میکنند: تولید انرژی برای روستاها با قیمت ارزان، بهسازی محیط زیست و جلوگیری از آلودگی آن و تهیه کود حیوانی غنیتر برای کشاورزان. کمبود و افزایش قیمت روز افزون سوختهای فسیلی از یکسو، وفور مواد فسادپذیر و سادگی عمل با توجه به هزینههای کم از سوی دیگر، سبب گردیده تا ساختمان دستگاه تخمیر و تولید بیوگاز در بسیاری از کشورهای اروپایی و حتی آمریکا بصورت یک تکنولوژی ساده و سنتی مورد استفاده قرار بگیرد (عبدلی، 1364). کشورهای اروپایی عمدتاً با توجه به نداشتن ذخائر نفتی کافی و یا محدودیت آن، آغازگر حرکت به سمت استحصال انرژی از منابع تجدیدپذیر بودهاند و مطالعاتی را جهت یافتن کلیه منابع موجود در تبدیل به سوخت و انرژی نمودهاند.
در کشورهای اروپایی نظیر بلژیک، دانمارک، فرانسه، یونان، هلند، انگلستان، ایتالیا و ایرلند تا سال 1982 نزدیک به 600 هاضم وجود داشته که از پسماندهای کشاورزی، فضولات انسانی و فا
بخشی از متن:
6 -ضرورت استفاده از انرژی های نوین: 29
6-1- انواع انرژیهای تجدید و میزان بهره برداری از آنها در جهان : 31
6-2- معرفی اجمالی انواع انرژی های نوین: 32
6-2-1-انرژی خورشیدی و ساختار آن000 000 32
6-3- کاربردهای انرژی خورشید. 34
6-4- استفاده از انرژی حرارتی خورشید. 34
6-4-1-کاربردهای نیروگاهی000000 34
6-4-2-نیروگاههای حرارتی خورشید از نوع سهموی خطی000000 35
6-4-3-نیروگاههای حرارتی از نوع دریافت کننده مرکزی000000 36
6-4-4- نیروگاههای حرارتی از نوع بشقابی0000000 37
6-4-5-دودکشهای خورشیدی00000 37
6-4-5-1-مزایای نیروگاههای خورشیدی000 37
6-4-6-کاربردهای غیر نیروگاهی00000000 38
6-5- انرژی فتوولتائیک و ساختار آن. 41
6-5-1-1-ب-مصرف کننده با بار الکتریکی0000000 43
6-5-2-مصارف و کاربردهای انرژی فتوولتائیک به طور مختصر از این قرارند:00 43
6-6- انرژی باد 44
6-7- تاریخچه 45
6-8- برق بادی در مقیاسهای کوچک.. 49
6-8-1-استفاده از زمین برای ساخت توربین0000 49
6-9- بزرگترین توربین بادی جهان. 50
6-10- انرژی زمینگرمایی. 50
6-11- انواع فناوریهای تبدیل. 51
6-11-1-نیروگاههای بخار خشک0000 51
6-11-2-نیروگاههای تبدیل به بخار سیال (Flash Steam) 52
6-11-3-نیروگاه چرخه دوگانه00000 52
6-12- مزایای انرژی زمین گرمایی. 52
6-13- معایب انرژی زمین گرمایی. 53
6-14- نیروگاه زمین گرمایی در ایران. 54
6-15- انرژی جزر و مد. 54
6-16 نرژی امواج دریا 57
6-17- طبقه بندی امواج دریا 58
6-18 نیروی برقآبی. 59
6-19 زیستتوده 62
6-19-1-ساختار شیمیایی زیست توده000000 62
6-20- محدودیتهای انرژیهای تجدید پذیر 63
7 -معرفی بیوگاز 64
7-1- تاریخچه تولید بیوگاز 67
7-2- منابع زیست توده جهت تولید بیوگاز 69
7-3- مهمترین منابع زیست توده که در تولید بیوگاز نقش دارند: 71
7-3-1-فضولات دامپروری :0000 71
7-3-2-ضایعات کشاورزی :000000 71
7-3-3-ضایعات صنایع غذایی00000 73
7-3-4-پتانسیل تولید بیوگاز از مواد مختلف از این قرار است:000000 74
7-3-5-چکیده پتانسیل تولید بیوگاز از زائدات کشاورزی در 35 درجه 00 74
7-3-6-جدول مقایسه خواص برخی گازهای رایج با بیوگاز00 0 75
7-3-7-جدول مقایسه بیوگاز با سایر مواد سوختی00000 76
7-4- انواع واکنشها برای حذف مواد آلی: 78
7-5- اصول هضم بی هوازی: 79
7-6- مراحل و واکنش های تولید بیوگاز: 84
7-7- دلایل ارجحیت بیوگاز به سایر انرژیهای تجدید پذیر: 89
7-8- معایب سیستم بیوگاز: 100
7-9- پارامترهای مؤثر بر فرآیند هضم بی هوازی و تولید بیوگاز: 101
7-10- بیوگاز و کود حاصله از آن: 113
7-11- برخی از خصوصیات کود بیوگازی: 114
7-12- مراحل ساخت واحد بیوگاز با تمام جزئیات آن: 120
7-12-1-روش های انجام آزمایش:00000 121
7-12-2-آیتمهایی که باید در طول زمان آزمایش اندازه گیری و بررسی شوند؟00000 122
7-13- مرداب های مصنوعی. 129
7-14- تولید انرژی. 130
7-15- بیوگاز و برق حاصل از آن: 131
7-16- مزایای بیوگاز: 134
7-16-1-امنیت انرژی 135
7-16-2بیوگاز همچنین دارای منافع عمومی زیر می باشد: 136
8 -لندفیل. 141
8-1- پسماند چیست؟ 143
8-2- فرآیند تولید بیوگاز در لندفیل. 148
8-3- ساختار کلی لندفیل های مدرن. 149
8-4- تکنیکهای مختلف جمع آوری گاز لندفیل ها 150
8-5- طراحی گودالهای دفن زباله 154
8-6- سیستمهای جمع آوری گاز غیرفعال: 158
8-7- طرح مناسب لندفیل ها 159
8-8- فراورده های جانبی لندفیل: 160
هزینه احداث لندفیل. 160
9 -بیومس.. 152
9-1- معرفی بیومس: 152
9-2- فرآیندهای تبدیل انرژی بیومس و کاربرد های آنها: 157
9-3- روشهای تبدیل بیومس به انرژی قابل استفاده: 158
9-4- انواع نیروگاههای بیومس: 159
10 -بیوگاز در جهان 152
10-1- کره 157
10-2- چین. 158
10-3- پاکستان. 162
10-4- نیجریه 162
10-5- ژاپن. 163
10-6- سوئد. 164
10-7- فیلیپین. 165
10-8- گواتما 166
10-9- انگلیس.. 167
10-10- برزیل. 167
10-11- آلمان. 168
10-12 نروژ 169
10-13- ایران. 170
11 -انرژی و وضعیت آن در ایران 152
11-1- چگونگی توزیع مصرف انرژی در ایران. 195
11-2 وضعیت و پتانسیل های فعلی توزیع انواع حامل های انرژی. 196
11-3 مزایای تدوین طرح جامع انرژی. 197
12 - نگاهی به تاریخچة بیوگاز در ایران 201
12-1- تحقیقات انجام شده در ایران در زمینه بیوگاز: 203
12-2- پتانسیل تولید بیوگاز در ایران. 203
12-3- بیوگاز را می توان از تخمیر سه گونه زیست توده بدست آورد: 204
12-4- منابع تولید بیوگاز 207
12-5- اولویتهای استفاده از بیوگاز در ایران. 208
12-6- عوامل بازدارنده در گسترش فنآوریهای تولید بیوگاز در ایران. 209
12-7- علل و ضرورت امکان استفاده از بیوگاز در ایران: 212
12-8- استفاده بهینه از دستگاههای بیوگاز در ایران. 213
12-9 پیشنهاداتی برای سیاست گزاری. 214
12-10- مزایای بیوگاز 215
12-11- محدودیت ها 218
12-12- نتیجه گیری. 218
13 -فناوری بیوگاز در مقیاس شهری. 221
13-1- رآکتورهای بی هوازی. 222
13-2- بازیابی فاضلاب. 226
13-2-1-1-آرایش اصلی دستگاه های بیوگاز0000000000 228
13-3- طراحی دستگاه های بیوگاز: 228
13-4- قسمتهای مختلف یک سایت بیوگاز 230
13-5- ساختار کلی دستگاههای تولید بیوگاز: 231
13-6- جاذب های بیوگاز 233
13-7- حوضچه ورودی: 234
13-8- حوضچه خروجی: 235
13-9- تانک تخمیر 236
13-10- محفظه گاز: 238
13-11- انواع راکتورها 242
13-11-1-راکتور آزمایشگاهی:00000000 242
13-11-2-راکتور نیمه صنعتی:0000 242
13-12- دوام و بقا : 243
13-13- طرح ریزی دستگاه های بیوگاز: 244
13-14- جاذب های افقی. 248
13-15- دستگاه مشترک بیوگاز 248
13-16- جاذب عمودی استاندارد کشاورزی. 249
13-17- جاذب عمومی بزرگ: 250
13-18- دستگاه بیوگاز با سرپوش گاز و مخزن تخمیری به صورت واحد و با حجم ثابت (مدل چینی) : 251
13-19- دستگاه های چینی بیو گازی با قبه –ثابت: 254
13-20- دستگاه بیوگاز با سرپوش شناور (مدل هندی) 257
13-21- دستگاه بیوگاز در مدل تایوانی. 264
13-22- واحدهای بالونی: 264
13-23- دستگاه بیوگاز نوع فرانسوی. 265
13-24- دستگاه بیوگاز با لوله های چرمی. 266
13-25- دستگاه بیوگازی با کیسه ی پلی اتیلن. 268
13-26- انواع واحدهای ساخته شده در ایران. 269
13-27- در یک تقسیم بندی دیگر دستگاههای بیوگاز به دو گروه تقسیم می شوند: 271
13-28- انواع هاضمهای بیهوازی. 272
13-28-1-ناپیوسته:(Batch)..................... 272
13-28-2-پیوسته:(Continious)00000000 272
13-28-3-نیمه پیوسته continious) :(Semi0000 272
13-29- بارگیری (loading): استفاده از سیستم بیوگاز و دستگاه تخمیر به دو صورت انجام می گیرد: 273
13-29-1-سیستم بسته (bach type ):0 273
13-29-2-سیستم پیوسته (continues type ) :00 274
13-30- طراحی سیستم تولید بیوگاز: 275
13-30-1-حوضچه رسوب:0000 275
13-30-2-هاضم:0000000000 275
13-30-3-مخزن گاز:00000 275
13-30-4-ابعاد مخزن گاز:000000000 276
13-30-5-استفاده از گاز تولیدی:000000 276
13-31- معرفی بخشهای مختلف نیروگاه بیوگازی. 277
13-31-1-بخش تفکیک زباله و تامین پسماندهای آلی 000000 277
13-31-2-واحد هضم بیهوازی و تولید بیوگاز0000000 277
13-31-3-واحد تولید برق و حرارت000000000000 278
13-31-4-سایر واحدها00000000 278
13-32 مقیاس سیستمهای بیوگاز 279
13-32-1-سیستم بیوگاز خانگی )کوچک(0000000 279
13-32-2-سیستم بیوگاز متوسط00000000 280
13-32-3-سستم بیوگاز بزرگ000000 281
14 -جمع آوری گاز و کاربردهای آن 283
14-1- وسایل تعیین حجم گاز تولیدی و آنالیز بیوگاز 284
14-2-جداسازی انواع ناخالصی ها از گاز زیستی. 284
14-2-1-سولفورزدایی :00000000 284
14-2-2-رطوبت گیری:00000 287
14-2-3-زدودن دی اکسید کربن :00000 287
14-2-4-فشرده سازی گاز تولیدی 00000000 287
14-3- گازی که از دستگاه هاضم حاصل می گردد دارای مصارف و کاربردهای زیادی می باشد از جمله: 287
14-4- سوخت خانگی. 292
14-5- مصرف وسایل مختلف در یک خانه روستایی مدرن به قرار زیر ارزیابی می شود: 293
بخشی از متن:
فهرست
مقدمه. 3
تعریف بیوگاز 8
منابع تولید بیوگاز 9
نحوه تولید بیوگاز 10
اصول هضم بی هوازی در تولید بیوگاز 10
مراحل شیمیائی تخمیر مواد آلی (شامل چربیها، هیدراتهای کربن و پرتئین ها) 13
تخمیر چربیها 13
تخمیر هیدراتهای کربن.. 14
تخمیر پرتئینها 14
پارامترهای مؤثر بر فرآیند هضم بیهوازی.. 15
درجه حرارت محیط تخمیر. 15
اسیدیته ((PH.. 17
میزان حضور مواد مغذی در محیط (C/N) 17
درجه غلظت مواد. 18
میزان حضور عوامل سمی.. 18
مدت زمان ماند مخلوط در مخزن هضم. 19
همزدن محتویات مخزن هضم و هموژنیزه کردن محتویات.. 20
آماده سازی مواد خام قبل از بارگیری.. 21
وجود مواد تسریع کننده واکنش... 21
اصلاح و تغییر در طراحی دستگاه بیوگاز 21
مواد افزودنی شیمیائی.. 21
تغییر دادن نسبت خوراک دستگاه 21
محیط بیهوازی (بسته) 22
انواع روشهای بارگذاری مخازن هضم: 22
سیستم پیوسته: 22
سیستم نیمه پیوسته: 22
سیستم ناپیوسته: 22
جمع آوری بیوگاز تولیدی: 23
بیوگاز و کود حاصل از آن: 23
ساختار کلی دستگاه تولید بیوگاز: 24
حوضچه ورودی: 24
حوضچه خروجی: 24
مخزن تخمیر: 25
محفظه گاز: 25
مهمترین طرحهای بیوگاز ساخته شده در جهان: 27
دستگاه بیوگاز عمودی.. 27
دستگاه بیوگاز افقی.. 28
دستگاه بیوگاز مشترک.. 29
دستگاه بیوگاز مدل چینی (قبه ثابت) 31
دستگاه بیوگاز مدل فرانسوی.. 32
دستگاه بیوگاز با لولههای چرمی.. 33
دستگاه بیوگاز با مخزن پلی اتیلنی.. 34
دستگاه بیوگاز با سرپوش شناور (مدل هندی): 35
دستگاه بیوگاز مدل تایوانی (واحدهای بالونی): 36
دستگاه بیوگاز مدل نپال: 37
مروری بر مطالعات انجام شده 38
منابع44
مقدمه
مهمترین مسئلهای که در قرن 21 بشریت با آن مواجه است مسئله انرژی و سوخت میباشد. زیرا از یک طرف تعداد صنایع مصرف کننده انرژی رو به افزایش است و از طرف دیگر سوختهای فسیلی (مهمترین انرژی مصرفی این صنایع) رو به اتمام میباشند. این در حالی است که هم اکنون آلودگیهایی که این سوختها ایجاد میکنند، موجب مشکلاتی در جهان گردیده است و اتحادیههای جهانی در حال تصویب قانونهایی مبنی بر حذف یا به حداقل رساندن مصرف این سوختها در دهههای آینده میباشند. بنابراین تمام کشورهای صنعتی، نیمه صنعتی و حتی اکثر کشورهای جهان سوم در تلاشاند تا برای جایگزین کردن این سوختها چارهای بیاندیشند و اتمام این منابع را به تأخیر اندازند (عدل و همکاران، 1379).
در جوامع کنونی وجود انرژی مستمر، پایدار و اقتصادی لازمه هرگونه توسعه و رشد اقتصادی میباشد. پس از انقلاب صنعتی، انرژی به تدریج به یکی از عوامل اصلی در تولید ملی و حرکت چرخهای اقتصادی کشورهای صنعتی و به دنبال آن، سایر کشورهای در حال توسعه تبدیل شده است (ثقفی، 1382). اقتصاد و تمدن کنونی تا حدی به انرژی وابسته است که تصور حتی لحظهای ادامه زندگی در عصر حاضر بدون انرژی امکان پذیر نیست. به طوریکه با اختلال و یا توقف در عرضهی آن، ماشین اقتصاد از کار خواهد افتاد. بنابراین تمامی کشورها در صدد هستند به هر نحو ممکن از انرژی مستمر و پایداری برخوردار باشند. از طرفی رشد اقتصادی و افزایش تقاضای انرژی در جهان سبب شده که قیمت نفت و گاز افزایش پیدا کرده و اتکا به این منابع برای تأمین انرژی کاهش یابد (تابنده، 1376).
منابع فسیلی مرسوم و تجدید ناپذیر تأثیر شگرفی بر امنیت انرژی دارند. این مسئله بسیاری از کشورهای جهان را واداشته است که به مسئله امنیت عرضه انرژی تمایل پیدا کرده و به تغییرات گستردهای در اقتصاد انرژی خود اهتمام تام ورزند. در این زمینه پیشرفتهای فناوری، نوید بخش راه حلهایی نو درباره تولید انرژی مورد نیاز بشر است. با شناسایی این روشهای جدید، گامی بلند در زمینه تغییر زیرساختهای تولید انرژی برداشته شده است (علیزاده، 1375). استفاده از ذخایر نامحدود انرژی تجدیدپذیر در این خصوص تأثیرات مهمی دارد. گستردگی و توزیع این عوامل در طبیعت باعث شده است که سیستمهای تولید انرژی به سمت سیستمهای محلی پیش رود؛ که انرژیهای نوین به خوبی میتوانند برای این منظور به کار گرفته شود. هم اکنون مسائلی مانند انرژی، محیط زیست، ازدیاد مواد زائد خطرناک، اتمام پذیری منابع فسیلی و رشد فزاینده مصرف انرژی از جمله مفاهیمی هستند که تحقیقات مختلفی را در جهان به خود اختصاص دادهاند. به واقع این مسائل روشن میکنند که دیگر نمیتوان به منابع موجود انرژی متکی بود (تابنده، 1376). در حقیقت، انجام تحقیقات گسترده در جهت دستیابی به منابع جدید و سالم که در چند دههی اخیر توسعه ویژهای پیدا کردهاند را میتوان بیانگر میزان اهمیت این نوع مفاهیم و علوم مرتبط به آنها دانست.
هم اکنون بیشتر کشورهای جهان برنامههای خود را طوری تنظیم کردهاند تا با بهینه کردن مصرف این منابع بر عمر منابع فسیلی خود بیفزایند و این در حالی است که با به کارگیری فناوری انرژیهای تجدید پذیر سعی دارند که میزانی از سهم مصرف منابع فسیلی را بر عهده این منابع بگذارند تا هم عمر منابع فسیلی را به تأخیر اندازند و هم جایگزینی برای آن یافته باشند (حیدری، 1365). مدارک بسیاری وجود دارد که سیاستهای انرژی جهانی که استفاده کارآمد از سوختهای فسیلی و انرژی را ارتقاء میدهند، به لحاظ محیطی غیر مسئولانه هستند؛ زیرا آنها باعث فساد جدی محیطی در سطوح محلی، منطقهای و جهانی میگردند. مطالعات نشان دادهاند که با ادغام منابع انرژی تجدید پذیر و ترکیب انرژی کلی، هر یک از این تأثیرات محیطی منفی را میتوان کاهش داد، یا مانع آن شد (حیدری، 1365). باید اذعان داشت که در قرن 21 سوختهای فسیلی کم کم جای خود را به انرژیهای تجدید پذیر (انرژی خورشیدی، بادی، برق آبی، بیومس، زمینگرمائی و غیره) خواهند داد. در میان این انرژیها، بیوگاز حاصل از بیومس، از اهمیت ویژهای برخوردار است. در این میان، بیوگاز به علت سالمسازی محیط زیست، تولید انرژی و کود مرغوب و قابلیت ایجاد آن در جوار اجتماعات بشری از اهمیت و جایگاه ویژهای برخوردار است (الماسی، 1361). گرچه شناسایی بیوگاز در جهان سابقهای طولانی دارد، اما استفاده عمومی و رایج آن در خلال قرن اخیر و بویژه در سه دهه گذشته بوده است. بیوگاز که منبع آن تودههای زیستی است، در انتخاب منابع جایگزین انرژی برای روستاها، مورد ایده آلی میباشد، بدین مفهوم که ارزان بوده و به لحاظ تولید و منشأ، محلی است. همچنین منبعی از انرژی است که برای چندین کاربری از جمله: گرم کردن، روشن کردن، ایجاد توان الکتریکی با مقیاس کوچک و غیره سودمند میباشد. از طرفی بیوگاز علاوه بر تولید انرژی باعث تولید کود کشاورزی و افزایش سطح بهداشت عمومی جامعه و کنترل بیماریها میشود. همچنین راه حلی مناسب برای دفع مواد زائد جامد میباشد (دهقان و همکاران، 1365). فاضلاب و مواد زائد جامدی که توسط صنایع و جوامع تولید میگردد، باعث آلودگی شدید محیط میشوند که میتوان با فناوری بیوگاز خطرات ناشی از این مواد را به شدت کاهش داد و از انرژی و کود تولیدی آن نیز استفاده نمود (رضویان، 1374). استحصال بیوگاز را میتوان از فرآیندهای بی هوازی تصفیه فاضلاب (UASB) و همچنین از محلهای دفن زباله نیز انجام داد و بخشی از هزینههای مصرفی این سایتها را جبران نمود (حیدری، 1365). منافع زیست محیطی سیستمهای بیوگاز حتی فراتر از سیستمهای تصفیه مرسومی است که تاکنون مورد استفاده قرار میگرفتند. این منافع، علاوه بر آنچه بیان شد، شامل کنترل بو، بهبود کیفیت آب و هوا، بهبــود ارزش غذایی کــود تولیدی، کاهش میزان انتشار گازهای گلخــانهای و دستیابی به بیوگاز به عنوان یک منبع انرژی میباشد؛ که خود بیوگاز تولیدی میتواند به طور همزمان انرژی الکتریکی و حرارتی تولید کند (تابنده، 1376). در این پژوهش ابتدا مدلی از رآکتور بیوگاز برای تولید بیوگاز در مزرعه طراحی و ساخته شد. سپس این دستگاه مورد آزمایش قرار گرفت تا علاوه بر مشخص شدن صحت کار آن، گاز
تولیدی حاصل از کود مرغی و کود بلدرچین مورد آزمایش و مقایسه قرار گیرد.
تعریف بیوگاز
به مجموعه گازهای تولیدی حاصل از هضم و دفع فضولات، اعم از انسانی، گیاهی و حیوانی که در نتیجه فقدان اکسیژن و فعالیت باکتریهای غیر هوازی خصوصاً باکتریهای متانزا تولید میشود، بیوگاز گفته میشود. این گاز به طور طبیعی در باتلاقها، مردابها و یا مکانهای دفن زبالههای شهری تولید میشود و برای استفاده، لازم است مهار گردد (عمرانی، 1375). برای استفاده اقتصادی از بیوگاز، عمل تخمیر را میتوان در شرایط کنترل شده در دستگاهی نسبتاً ساده به نام مخزن هضم انجام داد (الماسی، 1384). بیوگاز از روش تخمیر بیهوازی زیستتوده حاصل میشود. در واقع بیوگاز مخلوطی است از گازهای گوناگون که گاز متان عنصر اصلی تشکیل دهنده آن است (الماسی، 1361)؛ به طوری که حدود 55 تا 70 درصد این گاز را متان و حدود 35 تا 40 درصد آن را دی اکسید کربن و درصد بسیار ناچیزی را گازهای ازت و هیدروژن سولفوره و غیره تشکیل میدهند که مقادیر این گازها بستگی به دمای مخزن هضم و نوع مواد آلی داشته و با تغییرات آنها درصدهای گاز تغییر مییابند (عبدلی، 1363). طبق مطالعات انجام گرفته بر روی تجزیه بیوگازِ حاصل از مخازن هضم، ترکیبات بیوگاز از این قرارند (جدول 1-1):
جدول 1‑1- ترکیبات موجود در بیوگاز
نوع گاز
درصد موجود در بیوگاز
CH4
70 – 55 %
CO2
40 – 35 %
N2
3 – 0 %
H2
1 – 0 %
O2
1 – 0 %
H2S
1 – 0 %
عنصر با ارزش بیوگاز، گاز متان میباشد که هر چه درصد آن بالاتر باشد، کیفیت بیوگاز بهتر و تولید آن بهصرفهتر میباشد (الماسی، 1361). بیوگاز دارای رنگی شفاف با بویی قابل تشخیص مانند بوی تخم مرغ گندیده و بی طعم و مانند دی اکسید کربن، یک گاز گلخانهای است؛ با این تفاوت که اثر گلخانهای آن حدود 25 برابر اثر دی اکسید کربن میباشد(شیخ قاسمی، 1373). بیوگاز با یک شعله آبی رنگ که دارای حرارت 800 درجه سانتیگراد است میسوزد (الماسی، 1361). این گاز با نسبت 1- 20 با هوا مخلوط شده و دارای سرعت اشتعال بالای
بخشی از متن:
مقدمه: 1
2-10 - بیومس... 69
2-11- ساختار شیمیایی زیستتوده 72
2-12- فرآیندهای تبدیل انرژی بیومس و کاربردهای آنها: 72
2-13- انواع نیروگاههای بیومس: 74
3- معرفی بیوگاز. 78
3-1- تاریخچه بیوگاز 80
3-2- منابع زیستتوده جهت تولید بیوگاز 85
3-3- مهمترین منابع زیستتوده برای تولید بیوگاز و خواص هر کدام از آنها: 87
3-3-1- فضولات دامپروری.. 87
3-3-2- ضایعات کشاورزی.. 87
3-3-3- ضایعات صنایع غذایی.. 88
3-3-4- پتانسیل تولید بیوگاز از فضولات.. 88
3-3-5- مواد آلی و مقدار بیوگاز تولیدی آنها 89
3-4- انواع واکنشها برای هضم مواد آلی.. 89
3-4-1- اصول هضم بیهوازی.. 90
3-5- مراحل و واکنشهای تولید بیوگاز 92
3-6- مراحل شیمیائی تخمیر مواد آلی.. 95
3-6-1- تخمیر چربیها 95
3-6-2- تخمیر هیدراتهای کربن.. 96
3-6-3- تخمیر پروتئینها 96
3-7- پارامترهای مؤثر بر فرآیند هضم بیهوازی در تولید بیوگاز 97
3-7-1- درجه حرارت.. 97
3-7-2- اسیدیته. 98
3-7-3- مواد مغذی در محیط.. 98
3-7-4- غلظت مواد. 99
3-7-5- عوامل سمی.. 100
3-7-6- زمان ماند مخلوط.. 100
3-7-7- همزدن. 101
3-7-8- آمادهسازی مواد خام. 102
3-7-9- تسریعکنندههای واکنش... 102
3-7-10- اصلاح ساختار رآکتور 102
3-7-11- افزودنیها 103
3-7-12- محیط بیهوازی.. 103
3-8- کود حاصل از دستگاه بیوگاز 103
3-9- برخی از خصوصیات کود بیوگاز 104
3-10- تولید مردابهای مصنوعی.. 109
3-11- استفاده از بیوگاز در تولید انرژی.. 110
3-1- دلایل ارجحیت تولید بیوگاز به سایر انرژیهای تجدیدپذیر. 111
3-2- معایب سیستمهای بیوگاز 116
3-3- مزایای سیستمهای بیوگاز 116
4- لندفیل.. 122
4-1- پسماند چیست؟. 123
4-2- فرآیند تولید بیوگاز در لندفیل. 125
4-2-1- ترکیبات موجود در زباله. 125
4-2-2- رطوبت موجود در زباله. 126
4-2-3- سن لندفیل. 126
4-2-4- دمای لندفیل. 126
4-2-5- لندفیل. 126
4-2-6- وجود مواد مغذی در زباله. 126
4-3- ساختار کلی لندفیلهای مدرن. 127
4-4- تکنیکهای مختلف جمعآوری گاز لندفیلها 127
4-5- سیستمهای جمعآوری گاز غیر فعال 131
4-6- طراحی لندفیل. 132
4-7- فرآورده جانبی لندفیل. 135
5- بیوگاز در جهان.. 140
5-1- کره 141
5-2- چین.. 142
5-3- هند. 143
5-4- پاکستان. 145
5-5- نیجریه. 145
5-6- ژاپن.. 145
5-7- سوئد. 147
5-8- فیلیپین.. 147
5-9- گواتما 148
5-10- انگلیس... 148
5-11- برزیل. 149
5-12- آلمان. 149
5-13- نروژ 150
5-14- آمریکا 150
5-15- بیوگاز در ایران. 150
5-16- نگاهی به تاریخچة بیوگاز در ایران. 151
5-17- تحقیقات انجام شده در ایران در زمینه بیوگاز 154
5-18- پتانسیل تولید بیوگاز در ایران. 154
5-19- اولویتهای استفاده از بیوگاز در ایران. 157
5-20- عوامل بازدارنده در گسترش فنآوری تولید بیوگاز در کشور 157
5-21- علل و ضرورت استفاده از بیوگاز در کشور 160
5-22- استفاده بهینه از دستگاههای بیوگاز در ایران. 161
5-23- پیشنهاداتی برای سیاستگذاری.. 162
5-24- مزایای بیوگاز 162
5-25- محدودیتهای استفاده از فنآوری بیوگاز 164
5-26- چگونگی توزیع مصرف انرژی در ایران. 164
5-27- مزایای تدوین طرح جامع انرژی در ایران. 165
5-28- نتیجهگیری.. 168
6- دستگاه بیوگاز. 172
6-1- طراحی دستگاههای بیوگاز 173
6-2- قسمتهای مختلف دستگاه بیوگاز 174
6-2-1- حوضچه ورودی.. 175
6-2-2- تانک تخمیر (هاضم) 175
6-2-3- حوضچه خروجی.. 177
6-2-4- محفظه گاز 177
6-3- دوام و بقاء دستگاههای بیوگاز: 180
6-4- طرحریزی انواع دستگاههای بیوگاز 180
6-5- دستگاه بیوگاز مدل چینی.. 180
6-6- دستگاه بیوگاز مدل فرانسوی.. 182
6-7- دستگاه بیوگاز با لولههای چرمی.. 183
6-8- دستگاه بیوگاز با کیسه پلیاتیلنی.. 183
6-9- دستگاه بیوگاز مدل هندی.. 184
6-10- دستگاه بیوگاز مدل تایوانی یا مدل بالونی.. 185
6-11- دستگاه بیوگاز مدل نپال. 186
6-12- دستگاههای عمودی بیوگاز 187
6-13- دستگاههای افقی بیوگاز 188
6-14- دستگاههای مشترک بیوگاز 188
6-15- نتایج. 189
6-15-1- دستگاههای عمودی: 189
6-15-2- دستگاههای افقی: 190
6-15-3- دستگاه بیوگاز مشترک.. 190
6-15-4- دستگاه مدل چینی.. 190
6-15-5- دستگاه مدل فرانسوی.. 191
6-15-6- دستگاههای پلاستیکی و چرمی.. 191
6-15-7- دستگاه مدل هندی.. 191
6-15-8- دستگاه مدل تایوانی.. 192
6-16- انواع واحدهای ساخته شده در ایران. 192
6-17- انواع هاضمهای بیهوازی بر اساس نوع خوراکدهی.. 194
6-17-1- ناپیوسته. 194
6-17-2- نیمه پیوسته. 194
6-17-3- پیوسته. 195
6-18- معرفی بخشهای مختلف نیروگاه بیوگازی.. 196
6-18-1- بخش تفکیک زباله و تأمین پسماندهای آلی.. 196
6-18-2- واحد هضم بیهوازی و تولید بیوگاز 197
6-18-3- واحد تولید برق و حرارت.. 197
6-18-4- سایر واحدها 198
6-19- مقیاس سیستمهای بیوگاز 199
6-19-1- سیستم آزمایشگاهی.. 199
6-19-2- سیستم بیوگاز خانگی.. 199
6-19-3- سیستم بیوگاز متوسط.. 199
6-19-4- سستم بیوگاز بزرگ.. 200
6-20- نمونه موردی استفاده ازسیستم بیوگاز در مقیاس بزرگ.. 201
6-20-1- سیستم بیوگاز زندان کیتاراما در رواندا 201
6-20-2- سیستمهای نیمه صنعتی و صنعتی.. 202
6-21- فناوری تولید بیوگاز در مقیاس شهری.. 203
6-22- رآکتورهای بیهوازی در تصفیه فاضلاب.. 203
6-23- بازیابی فاضلاب.. 206
7- جمعآوری بیوگاز و کاربردهای آن.. 210
7-1- وسایل تعیین حجم گاز تولیدی و آنالیز بیوگاز 210
7-2- جداسازی انواع ناخالصیها از گاز: 211
7-2-1- سولفورزدایی.. 211
7-2-2- رطوبتگیری گاز 213
7-2-3- زدودن دی اکسید کربن.. 213
7-2-4- فشردهسازی گاز تولیدی.. 213
7-3- مصارف عمده بیوگاز 214
8- واژه نامه. 222
9- منابع.. 252
سخنان مؤلف
بی شک مهمترین مسئلهای که در قرن 21 بشریت با آن مواجه است، مسئله انرژی و سوخت میباشد. زیرا از یک طرف تعداد صنایع مصرف کننده انرژی رو به افزایش است و از طرف دیگر سوختهای فسیلی که مهمترین انرژیهای مصرفی این صنایعاند رو به اتمام هستند. این در حالی است که هماکنون آلودگیهایی که این سوختها ایجاد میکنند، باعث مشکلاتی در جهان شده است و اتحادیههای جهانی در حال تصویب قانونهایی مبنی بر حذف یا به حداقلرساندن مصرف این سوختها در دهههای آینده میباشند. در این راستا بیشتر کشورها کوشیدهاند تا منابع انرژی خود را گسترش داده و سهم مصرف سوختهای فسیلی را کاهش دهند. باید اذعان کنیم که ما صاحب منابع عظیم بیشماری در این کره خاکی هستیم و در هر زمان یکی یا چند تا از این منابع کشف شده و به بهرهبرداری رسیدهاند. البته مهمترین دلیل کشف آنها در هر زمان، نیاز مردمان آن زمان بوده است و چیزی که باعث کشف آن شده فناوری بوده است. بدینترتیب هر زمانی محصول خاصی ثروت به شمار میرفته است. به عنوان مثال زمانی طلا ثروت بوده و عصر طلا نامیده شده است، زمانی آهن ثروت بوده و عصر آهن نامیده شده است و زمانی عصر برنز و قرن حاضر عصر نفت میباشد و بدین ترتیب هر زمانی به دلیل احتیاجات مردمان آن زمان و همچنین فناوری آن دوره ثروتها نیز تغییر میکنند.
بنابراین ما در این جهان نهتنها شاهد تغییراتی در جهت استفاده مؤثرتر از منابع هستیم، بلکه خود منابع نیز در حال تغییر هستند. برای مثال، زمین تا وقتی که انسان کشاورزی و پرورش دام و طیور را نیاموخته بود، ثروت به شمار نمیرفت و فقط در نتیجه خلاقیت ذهن بشر به مهمترین ثروت تبدیل شد. یا برای مثال نفت را در نظر بگیرید؛ نفت در گذشته ثروت محسوب نمیشد، بلکه محصولی زائد به شمار میرفت که آبها را آلوده میکرد و انسان همیشه از آن گریزان بود. نفت همین صد سال پیش یعنی زمانی که بشر چگونگی پالایش و سوزاندن آن را آموخت، به ثروت تبدیل شد. بدینترتیب هر دورهای منبع خاص خودش را داشته است. روغن نهنگ در قرن هجدهم، ذغال سنگ در قرن نوزدهم و نفت در قرن بیستم اصلیترین منابع ثروت محسوب میشد. بشر از دیر باز چنین میپنداشت که این منابع به زودی به پایان خواهند رسید و باید در مصرف آنها صرفهجوئی کند. اما همیشه در زمانی بسیار زودتر از به پایان رسیدن یک منبع، با یافتن منبعی بهتر، از مصرف آنها دست کشیده است و این مطلب بیانگر آن است که در این کره خاکی منابع محدود نمیباشند. در واقع باید گفت منابع جهان ثابت نیستند بلکه با پیشرفت فناوری یک منبع جای خود را به منبع دیگر، که غنیتر و مورد نیازتر هست میدهد. بایستی به این نکته توجه کرد که هیچ منبعی به خودی خود ثروت محسوب نمیشود. بلکه همه ثروتها اختراع ذهن انسان به شمار میروند. به بیان دیگر صنعت و فناوری تعیین میکند که چه چیزی میتواند ثروت باشد و چه چیزی نه. صنعت کشاورزی زمین را به ثروت تبدیل میکند و صنعت نفت بنزین خودرو را. در واقع در هر دورهای میزان و اندازه منابعی چون نفت، غذا، پلاستیک و دیگر منابع را فناوری تعیین میکند. برای مثال امروز فناوری سوخترسانی انژکتوری، بهرهوری بنزین را دو برابر کرده است.
بخشی از متن:
در سالهای اخیر روند رو به رشد مصرف انرژی، موجب بحران انرژی در جهان گردیده است . مصرف روز افزون انرژی حاصل از سوختهای فسیلی اگر چه رشد سریع اقتصادی جوامع مختلف را بهمراه داشته است، اما بواسطه انتشار آلاینده های حاصل از احتراق سوختهای فسیلی و افزایش دی اکسید کربن در اتمسفر و پیامد های ناشی از آن، جهان را با تغییرات تهدید آمیزی روبرو کرده است. از سوی دیگر محدودیت منابع فسیلی و تجدید ناپذیر بودن این منابع موجب گردیده است تا سیاست گذاران و برنامه ریزان بخش انرژی با انجام مطالعات ساختاری، جایگزینی حامل های انرژی، حرکت به سوی سوختهای پاک را در رئوس برنامه های خود قرار دهند (امین صالحی و عبدلی، 1388). دستیابی به توسعه پایدار متضمن وجود چهار عامل الف) محیط، ب) جمعیت و منابع، ج) اقتصاد، د) فرهنگ و جامعه می باشد، بنابراین نبود هریک از این عوامل مانع از دستیابی به توسعه پایدار و عدالت محیطی خواهد شد. در این بین محیط زیست نیز به عنوان یکی از عوامل اصلی توسعه پایدار که در حیات انسانی نقش مؤثری را ایفا می نماید به وسیله ای اساسی برای دستیابی به توسعه زود هنگام بر اساس دیدگاه های سودمحور موجود در جهان سرمایه داری تبدیل شده است (احمدی و حاجی نژاد، 1389). محیط زیست به تمام محیطی اطلاق می شود که انسان به طور مستقیم و غیر مستقیم به آن وابسته است و زندگی و فعالیت های او در ارتباط با آن قرار دارد (فیروزی، 1384). بنابراین در صورتیکه روند فعلی بهره برداری و تخریب محیط زیست با تکیه بر مکاتب اصالت فایده و سرمایه داری ادامه یابد نه تنها مانع از تحقق توسعه پایدار خواهد شد بلکه آینده حیات را در زمین در معرض خطر نابودی قرار می دهد. مشکلات محیط زیست امروزه به بحران جهانی و فراگیر تبدیل شده است و چنانچه به صورت علمی و جدی برای رفع آن چاره اندیشی نشود بشر با فاجعه عظیمی مواجه خواهد شد (حجازی و عربی، 1387) بنابراین ارتباط محیط زیست با توسعه پایدار، ارتباطی متقابل و دو سویه می باشد و محیط زیست به عنوان یکی از ارکان توسعه پایدار می تواند عاملی برای دست یابی به توسعه پایدار یا نرسیدن به آن باشد. از طرفی توسعه پایدار نیز می تواند مانع از تخریب محیط زیست شود (احمدی و حاجی نژاد، 1389).
مناطق روستایی به عنوان قسمتی از جهان کنونی بخش عمده ای از جمعیت و عرصه های طبیعی کشور را به خود اختصاص داده است و جامعه روستایی نقش اساسی در حیات اقتصادی و اجتماعی کشور دارد. با توجه به اهمیت و جایگاه جامعه روستایی در کشور و مشکلات و چالش هایی که این جامعه در فرایند توسعه خود با آن مواجه است، شناخت و تحلیل ویژگیهای برنامه ریزی توسعه روستایی در کشور و پرداختن به کلیه ابعاد آن ضرورت تام دارد. حفاظت از محیط زیست روستایی یک وظیفه ملی است که ضروری است در برنامه های ملی , منطقه ای و محلی توجه ویژه ای بدان شود. مدیریت مواد زائد روستایی مهمترین اقدام برای جلوگیری از خطرات و آسیب های مربوط به محیط زیست است (وزارت کشور، 1385) یکی از مناسب ترین انرژی های تجدید پذیر که از زمان های بسیار گذشته مورد استفاده بوده و علاوه بر تجدید پذیر بودن و سازگاری با محیط زیست دارای منافع اقتصادی اجتماعی نیز می باشد، انرژی بیوماس (بیوگاز) می باشد که پس از انرژی آب در جایگاه دوم قرار دارد (پورخباز و جوانمردی، 1389). بررسی ها نشان می دهد که در کشورهای در حال توسعه ای مثل هند، مالزی، تایلند بصورت سنتی در روستاها و در کشورهای توسعه یافته ای مثل آلمان، آمریکا بصورت صنعتی در دامپروری های بزرگ و کوچک سالهاست که از کود دامها جهت تولید بیو گاز و سپس با مصرف آن به عنوان سوخت بمنظور تولید توامان برق و حرارت استفاده می شود (سهرابی و همکاران، 1389). هدف از این نوشتار، بررسی استفاده از فناوری بیوگاز برای تامین بخشی از انرژی مصرفی روستایی در جهت حفاظت از محیط زیست به عنوان یکی از ابعاد پایداری می باشد.
2- فناوری بیوگاز و توسعه پایدار روستایی
پیامدهای زیست محیطی مصرف سوخت های فسیلی، به همراه بحران انرژی، منجر به طرح مدلی از توسعه با نام توسعه پایدار شد. توسعه پایدار با تکیه بر سه اصل پایداری اجتماعی، اقتصادی و زیست محیطی، به ارایه راه حل هایی در مقابل الگوهای فانی توسعه کالبدی، اجتماعی، اقتصادی و جلوگیری از بروز مسایلی هم چون نابودی منابع طبیعی، تخریب سامانه های زیستی، تغییر اقلیم، افزایش بی رویه جمعیت، بی عدالتی و پایین آمدن کیفیت زندگی پرداخته است. به نحوی که با پاسخ گویی به نیازهای بشر امروز، بتواند شرایطی مشابه جهان امروز را برای آیندگان به ارمغان آورد (عادلی گیلانی و سوری، 1389). توسعه پایدار، توسعه ای است که برآورده کننده نیاز های حال حاضر بدون لطمه زدن به توانایی نسل های آینده برای برآورده کردن نیاز هایشان می باشد (کوچران[1]، 2006). توسعة پایدار موجب حفاظت زمین، آب، گیاه، و منابع ژنتیکی حیوانات می شود؛ از لحاظ زیست محیطی، مخرب نیست؛ از لحاظ فنی، مناسب و از نظر اقتصادی و اجتماعی، قابل قبول است (کریم و هاشمی، 1388؛ نسترن و همکاران، 1389). برای رسیدن به توسعه پایدار، نیاز به منابع بیشتر انرژی است که برای تأمین منابع کافی انرژی دو راه حل وجود دارد : اولاً افزایش بازدهی انرژی دستگاه های مورد استفاده ، ثانیاً استفاده از منابع جدید انرژی. از طرف دیگر با افزایش جمعیت و سطح رفاه جامعه، مقدار استفاده از منابع غذایی (گیاهی و جانوری) افزایش یافته است. همچنین با توسعه صنایع دامپروری و کشاورزی و استفاده بیشتر از منابع غذایی، آلودگی حاصل از فضولات گیاهی و دامی افزایش یافته است. در جهت تصفیه این فضولات می توان از روش تجزیه بی هوازی یا تجزیه هوازی استفاده نمود. روش بی هوازی در مقایسه با روش دیگر نه تنها انرژی بر نیست بلکه مقداری انرژی بصورت بیوگاز تولید می نماید.(قیصری، 1389) هدف اصلی توسعه پایدار تامین نیازهای اساسی ، بهبود و ارتقاء کیفیت زندگی ، اداره بهتر سامانه های زیستی ذکر شده است برای دستیابی به مفاهیم توسعه بایدار اهداف پنجگانه زیر با توجه به طبیعت آن توسعه مشخص می شود:
- تامین نیازهای اساسی نوع بشر برای امروز و فردا با توجه به رشد کیفی
- بهبود و ارتقاء زندگی برای همه ی طبقات جامعه
- حفظ و اداره مناسب تر سامانه های زیستی و آینده ای امن تر و سعادتمندتر
- توجه به زیستگاه موجودات و بوم آن
- تامین ابزار آلات و امکانات فکری و فناوری برای رشد لازم (اکبری لنگوری، 1391)
فضولات دام وطیور از جمله عوامل آلودگی و تخریب محیط زیست روستاها می باشند؛ فضولات دامی عبارتست از کلیه مواد زائد جامد و مایعی که از طریق دامها در محیط تخلیه می گردد. در مناطق روستایی به دلیل وجود دام در بیشتر منازل، مواد آلی بیشتری نسبت به شهرها وجود دارد که شامل کودگاوی، گوسفندی و فضولات مرغی بعلاوه مواد زائد طویله ها می باشد. در خانه های روستایی معمولا فضولات دامی به همراه دیگر مواد زائد در محوطه حیاط یا در جلوی منازل ریخته و ذخیره می شوند تا در فصل مناسب (معمولاً پاییز) مورد استفاده قرار گیرند. این انباشتن فضولات به تولید مگس و پخش بو کمک می کند و به افزایش انتشار بیماری ها منجر می شود (وزارت کشور، 1385) استفاده از فناوری بیوگاز به عنوان رویکردی نوید بخش، به خصوص در طرح های توسعه، مدیریت و ساماندهی ضایعات آلی تولید شده در مناطق روستایی، به ویژه در کشورهای درحال توسعه، مورد توجه قرار گرفته است. علت این امر را می توان استفاده از بیوگاز تولیدی به عنوان منبع انرژی تجدیدپذیر، نقش به سزای آن در حل معضلات زیست محیطی ناشی از آلاینده های آلی تولید شده در جوامع انسانی، دسترسی آسان و منافع اقتصادی- اجتماعی حایز اهمیتی دانست که آن را از سایر منابع انرژی تجدیدپذیر متمایز می سازد و بنابراین نیروگاه های بیوگاز سوز قادر است، نقش مؤثری در پیشبرد جامعه به سمت توسعه پایدار ایفاء نماید (امین صالحی و عبدلی، 1388)
با توجه به مباحث مطرح شده، به نظر می رسد آنچه امری حتمی و ضروری در توسعه پایدار می باشد، در نظر گرفتن منافع نسل حاضر همراه با منافع نسل های آینده است . در اعلامیه استکهلم 1972 و نیز اعلامیه ریو 1992 در مورد محیط زیست ، این موضوع مورد توجه و عنایت قرار گرفته است . در اصل 6 اعلامیه است کهلم آمده است : دفاع از محیط زیست و بهبود آن برای نسل های حال و آینده هدفی دارای اولویت برای بشریت است ، وظیفه ای که تحقق آن باید هماهنگ و همگام با تحقق اهداف بنیادین صلح وتوسعه اقتصادی و اجتماعی در سراسر جهان که قبلاً معین شده اند صورت گیرد (رئیسی، 1387) بنابراین با توجه به شکل-1 می توان اثر بکارگیری فن آوری بیوگاز را در بهبود محیط زیست و در نتیجه در تحقیق توسعه پایدار ملاحظه کرد.
[1]. Cochrane
بخشی از متن:
در ده سال اخیر بعلت کمبود انرژی و افزایش قیمت آن در کشورهای وارد کننده مواد سوختی مورد توجه خاص قرار گرفته است. در حال حاضر رشد مصرف انرژی در جهان سه برابر رشد جمعیت است. بشر برای بدست آوردن رفاه بیشتر، نیاز به انرژی بیشتری دارد. افزایش قیمت منابع انرژی تجدیدناپذیر (فسیلی) از دهه 1970 به بعد، همچنین محدودیت و مخاطرات زیست محیطی (برهم زدن تعادل گرمایی جو زمین و ...)، توجه بسیاری از محققان در سراسر جهان را به منابع انرژی تازه معطوف کرده است. منابعی که احیاپذیر بوده و مخاطرات زیستمحیطی کمتری را داشته باشند. انرژیهای نوین با ساختاری متفاوت از انرژیهای فسیلی، باعث تحولی عظیم در استفاده از انرژی شدهاند. در این میان، با توجه به رشد فزاینده نیاز و تقاضا برای انرژی (هر ده سال دو برابر میشود)، تلاش برای یافتن منابع جانشین انرژی امری ضروری است. بیوگاز حاصل از زیستتوده از مهمترین انرژیهای نوین میباشد. امروزه ازدیاد روزافزون مواد زائد و تولید انرژی از این مواد با توجه به سهولت فناوری و اقتصادی بودن این منابع سبب گردیده است تا توسعه آنها در بسیاری از کشورهای جهان، به صورت یک فناوری صنعتی مورد استفاده قرار گیرد. در خصوص تخریب لایه ازن که اکنون مسئله روز جهانی شده است، گفته میشود که در سطح جهان سالیانه حدود 40 میلیون تن گاز متان تنها از زبالههای شهری خود به خود تولید شده و در جو زمین پراکنده میگردد که جمعآوری و سوخت آنها به صورت مناسب به خوبی امکانپذیر است. بعضی از کشورهای جهان برای حل مشکل یاد شده و نیز برای توزیع نوین سوخت به مناطق روستایی به استفاده علمی از انرژی زیستی از طریق تولید بیوگاز از مواد مختلف اقداماتی انجام داده اند. از جمله این کشورها می توان هلند، ایتالیا، چین، کره شمالی، پاکستان، هندوستان و نپال را نام برد.به دنبال اهداف فوق، بیشتر کشورهای جهانسوم و همچنین، اغلب کشورهای صنعتی به بهرهبرداری از سیستمهای بیوگاز برآمدهاند. در این مقاله روند پیشرفت بیوگاز در قرن اخیر مورد مطالعه قرار گرفته است.
در طی قرن دهم قبل از میلاد مسیح در آشور و در قرن شانزدهم در ایران از بیوگاز برای گرم کردن آب جهت حمام و شستشوی بدن استفاده میشد. در سال 1776 میلادی الکساندر ولتا نتیجه گرفت که بین مقدار مواد آلی فسادپذیر و میزان گاز قابل اشتعال رابطه مستقیمی وجود دارد (عبدلی، 1364). در سال 1859 اولین واحد تخمیر بیهوازی در بمبئی هند ساخته شد. در سال 1860 میلادی اولین واحد استفاده شده برای تصفیه مواد جامد فاضلاب بوسیله شخصی به نام اچ ـ موراس بکار گرفته شد (نجفپور، 1374). در اروپا برخی واحدهای بیوگاز بیشتر از20 سال است که مشغول به کار هستند. در حال حاضر بیش از600 واحد هاضم در اروپا مشغول بکار میباشند و تنها در کشور آلمان در حدود250 واحد بیوگاز، طی پنج سال گذشته نصب شده است. از نیمه اول قرن بیستم در بسیاری از کشورها ساخت دستگاههای تولید کننده بیوگاز و استفاده از گاز حاصله آن به منظور پخت و پز، تأمین روشنایی و بکار انداختن موتورهای احتراقی وسایل نقلیه به سرعت توسعه یافت (ثقفی، 1382). در این بین کشورهای چین و هند بیش از سایر کشورهای دیگر به ساخت و بهرهبرداری از دستگاههای تولیدکننده بیوگاز پرداختهاند (سالک، 1373). بیش از نیمقرن پیش در تصفیهخانههای فاضلابهای شهری در اروپا استفاده از گاز متان حاصل از تخمیر مواد بیولوژیکی مطرح بود؛ اما استفاده از بیوگاز بصورت متداول از جنگ جهانی دوم به بعد مطرح شد. اهمیت و توسعه بیوگاز در جهان طی سالهای اخیر بسیار مورد توجه قرار گرفته است. به عنوان مثال تعداد این دستگاهها در چین از سال 1920 تا سال 1985 بالغ بر هفت میلیون برآوردگردیده که نیازهای انرژی پنجاه میلیون روستایی را بر طرف مینماید. درکشور امریکا بیش از 400 ژنراتور بزرگ و کوچک بیوگاز برای مصارف خانگی و صنعتی از انرژی بیوگاز استفاده مینماید (عمرانی، 1375).
تعداد هاضمهای کوچک و متوسط مورد استفاده در سطح جهان در سال 2005 از 25 میلیون واحد فراتر رفته و دهها هزار واحد بزرگ بویژه در اروپا و آمریکا نصب شده است. دامداریها، مجتمعهای کشاورزی و تقریباً تمام تصفیهخانههای فاضلاب کشورهای اروپای غربی موظف به استفاده از هاضمهای بیهوازی و واحدهای بیوگازی شدهاند (جدول 1).
جدول 1- تعداد واحدهای بیوگاز ساخته شده در کشورهای مختلف
راندمان مناسب فرآیند هضم بیهوازی در حل معضل زبالهها و تولید انرژی باعث توجه کشورهای اروپایی نظیر دانمارک، سوئد، فرانسه، آلمان، هلند، ایتالیا، انگلستان و ... به استفاده و توسعة این فناوری شده است (ثقفی، 1382). علاوه بر کشورهای اروپایی، کشورهای آمریکایی و آفریقایی هم به منظور تأمین بخشی از انرژی خود، استفاده از فرآیند هضم بیهوازی را مد نظر قراردادهاند. آمریکا از جمله کشورهایی است که تمایل زیادی به استفاده از نیروگاههای بیوگازی صنعتی نشان داده است. هاضمهای موجود در آمریکا اکثراً دارای حجمهای بالا با قابلیتهای کاربرد متنوع برای استفاده از فاضلاب و زبالههای شهری، فاضلاب صنعتی، فضولات دامی و زائدات کشاورزی ساخته شدهاند. آمریکا علاوه بر توجه به کاربرد بیوگاز، در مبحث تحقیقات بیوگازی نیز از کشورهای پیشتاز در جهان میباشد. در سا ل 2003 پروژه (MEAD) توسعه بیوگاز در آمریکا را شتاب قابل توجهی بخشید (سالک، 1373). افزایش مواد زائد در جهان اعم از مایع یا جامد و تولید بیوگاز از این مواد، با توجه به سهولت فناوری و ساخت دستگاه تولید بیوگاز در شرایط بیهوازی سبب شده است که تولید و مصرف آن در بسیاری ازکشورها به دو صورت (صنعتی وسنتی) مورد توجه قرار گیرد. کشورهای هند و چین در دهه 1930 میلادی، به طور وسیع به ساخت دستگاههای بیوگاز اقدام نمودند (نجفپور، 1374).
در کشورهاى اروپاى غربى و جنوب شرقى آسیا فناورى تولید انرژى از بیوگاز بسیار قابل توجه است. در میان کشورهاى اروپایى به کشور سوئد مىتوان اشاره کرد که در زمره بهترین مصرف کنندگان این نوع از انرژى در صنعت حمل و نقل به حساب مىآید. صنعت بیوگاز در کشورهای آسیای جنوب شرقی، در سطح بسیار وسیعی پیاده شده است و موفقیتهای چشمگیری نیز داشته است (ثقفی، 1382).
اغلب کشورهای پیشرفته طرحهای بزرگی در زمینه استفاده از بیوگاز در مناطق روستایی به مرحله اجرا گذاشتهاند. به عنوان مثال، در کشور چین800 میلیون روستایی80 % انرژی مورد نیاز روزانه خود را از منابع زیستی به دست میآورند؛ در غیر این صورت طبق برآوردها سالانه باید حدود500-400 میلیون تن چوب و شاخ و برگ در مناطق روستایی سوزانده شود. ذکر این نکته ضروری است که انرژی حرارتی ناشی از سوختن بیوگاز تولید شده از منابعی همچون چوب و... در مقایسه با سوزاندن مستقیم آنها30-40% افزایش نشان میدهد. امروزه نصف جمعیت جهان برای استفادههای گرمایی و آشپزی از چوب استفاده میکنند و مصرف چوب سالانه حدود۲ الی ۳ درصد افزایش مییابد (نجفپور، 1374). درسال۱۹۹۰ مصرف چوب، درحدود ۲ میلیارد متر مکعب (حدود۱۰ میلیون بشکه در روز معادل نفت) بوده است. منابع انرژی بیومس (زیستتوده) را میتوان با استفاده از روشهای جدید مهندسی ژنتیک گسترش داد. راههایی نیز وجود دارد که از آنها میتوان برای بالابردن کیفیت سوخت استفاده کرد، مانند تبدیل چوب به زغال، زباله چوب و خاک اره را هم از طریق فشردن و شکل دادن، به صورت قالب(Pellet) در میآورند. درآمریکای شمالی و اروپا از این قبیل سوختهای جامد در صنایع استفاده میشود (سالک، 1373).
بیشتر کشورهای دنیا برنامهریزی گستردهای برای تأمین انرژی مورد نیاز خود از طریق انرژیهای نو انجام دادهاند. با توجه به روند کنونی، کشورهای اروپایی به دنبال توصیه اتحادیه اروپا، به سمت استفاده از انرژیهای جانشین و تجدیدپذیر، تا سال۲۰۳۰ میلادی حدود ۱۵ درصد از مجموع انرژی مورد نیاز خود را از طریق انرژیهای تجدیدپذیر، تأمین خواهند کرد. دنیای امروز نیاز مبرم می داند که توجه زیادی برای تولید و استفاده از بیوگاز نشان دهد. اغلب کشورهای پیشرفته طرحهای بزرگی در این زمینه به مرحله اجرا گذاشتهاند، درکشورهای اسکاندیناوی طرحهای بزرگ صنعتی با استفاده از بیوگاز، راهاندازی شده است. کشور سوئد تا سال۲۰۵۰ میلادی، ۴۰% از بازار خودرو خود را به استفاده از بیوگاز مجهز میکند که آن را از فرایند سینیتیک بر روی چوب تأمین میکند. در کشور انگلیس آییننامه کاربرد سوختهای تجدیدپذیر در ترابری این کشور، برای شرکتهای دستاندر کار فعالیتهای انرژی مانند، شرکتهای نفتی، مؤسسات واردکننده نفت و گاز و دیگر نهادهای عرضه کننده سوخت، لازمالاجرا خواهد بود. استفاده از بیوگاز در اغلب کشورهای جنوب شرقی آسیا که با مشکل سوخت فسیلی مواجه هستند، وجود دارد (نجفپور، 1374). از این سیستم برای سه منظور استفاده میکنند: تولید انرژی برای روستاها با قیمت ارزان، بهسازی محیط زیست و جلوگیری از آلودگی آن و تهیه کود حیوانی غنیتر برای کشاورزان. کمبود و افزایش قیمت روز افزون سوختهای فسیلی از یکسو، وفور مواد فسادپذیر و سادگی عمل با توجه به هزینههای کم از سوی دیگر، سبب گردیده تا ساختمان دستگاه تخمیر و تولید بیوگاز در بسیاری از کشورهای اروپایی و حتی آمریکا بصورت یک تکنولوژی ساده و سنتی مورد استفاده قرار بگیرد (عبدلی، 1364). کشورهای اروپایی عمدتاً با توجه به نداشتن ذخائر نفتی کافی و یا محدودیت آن، آغازگر حرکت به سمت استحصال انرژی از منابع تجدیدپذیر بودهاند و مطالعاتی را جهت یافتن کلیه منابع موجود در تبدیل به سوخت و انرژی نمودهاند.
در کشورهای اروپایی نظیر بلژیک، دانمارک، فرانسه، یونان، هلند، انگلستان، ایتالیا و ایرلند تا سال 1982 نزدیک به 600 هاضم وجود داشته که از پسماندهای کشاورزی، فضولات انسانی و فاضلابهای صنعتی تغذیه مینمودهاند. 20% انرژی اروپا تا سال 2020 از طریق بیوگاز تامین خواهد شد. بیوگاز یک روش تأمین انرژی است که کربنی تولید نمیکند. مواد منتج شده از گیاهان و حیوانات ( نظیر فضولات حیوانی یا ضایعات گیاهی ) در طول دوره ماند (ماندگاری) خود، تا زمانی که تجزیه شوند تنها دیاکسید کربن تولید میکنند و هیچ گونه انرژی تولید نمینمایند، در حالی که برق تولید شده از بیوگاز نسبت به انرژیهای معمول انتشار دیاکسید کربن بسیار کمتری دارد (عمرانی، 1375). 1کیلووات تولید برق با بیوگاز از تولید 7000 کیلوگرم دیاکسید کربن در هر سال جلوگیری میکند. با توجه به این که امروزه واردات بنزین، بودجه زیادی لازم دارد، میتوان با بهرهگیری از بیوگاز به عنوان منبعی پاک و در دسترس علاوه بر کاهش وابستگی به واردات بنزین و همچنین آلودگیهای ناشی از مصرف بنزین در حملونقل، به حفظ منابع نفت و گاز به عنوان سرمایههای ملی کوشید (ثقفی، 1382).
آشنایی با نحوه تولید و استفاده از بیوگاز در کشورهای دیگر به منظور استفاده ازنکات مثبت تجربیات آنها بسیار مفید است. در ادامه نحوه تولید و استفاده از بیوگاز در چند کشور به اجمال مورد بررسی قرارمیگیرد (عمرانی، 1375):
کره
در کره اهمیت تولید بیوگاز به صورت جدی مورد توجه قرار گرفته است؛ بهطوریکه تا سال1975 حدود 30000 واحد بیوگاز در این کشور فعال بوده است.
چین
اهمیت و توسعه بیوگاز در جهان طی سالهای اخیر بسیار مورد توجه قرار گرفته است؛ بهطوریکه تعداد این دستگاهها در چین از سال 1920 تا 1972 تنها 1300 و بعد از آن تا سال 1985 بالغ بر هفت میلیون برآورد گردیده است (عبدلی، 1364). در این کشور بیش از 400 ژنراتور بزرگ و کوچک بیوگاز برای مصارف خانگی و صنعتی از انرژی بیوگاز استفاده مینمایند. کشور چین با ابداع نوعی سیستم زراعی همراه با دام توانسته است گیاه و دام را در یک سیستم، در ارتباط با زنجیره ریزهخواری قرار دهد. در این سیستمها برنج محصول زراعی اصلی است، زمانیکه دانه برداشت میشود کاه وکلش، همراه با کود دامی در یک دستگاه هضم کننده بیوگاز به صورت کمپوست در میآید که متان حاصل از این فرایند برای پختوپز و روشنایی و لجن باقیمانده در دستگاه هضم کننده، برای تولید قارچ خوراکی مورد استفاده قرار میگیرد. بعد از اینکه قارچ برداشت شد، بقایای ماده آلی هم به عنوان کود آلی به مزارع برنج برگردانده میشود (نجفپور، 1374). این سیستم، از نظر مصرف انرژی و چرخش عناصر غذایی بسیار کارآمد است (شکل 1و2).
وضعیت انرژی هند در مقایسه با سایر کشورهای توسعه یافته تفاوت بسیاری دارد که حکایت از مجموعهای از منابع متعدد انرژی، برای تأمین نیازهای مردم این کشور دارد. در گذشته، اقدامهای هند به دلیل فعالیت های پراکنده و مجزا موفق نبوده است. روند حرکت به سمت انرژی های نو در هندوستان سه مرحله را پشت سر گذاشته است (عبدلی، 1364):
مرحله اول: در اواخر دهه 1970 و اوایل دهه 1980 بیشتر تلاشها در زمینه بیوگاز، ساخت اجاقهای مدرنتر و استفاده از انرژی خورشیدی و تلاش برای افزایش آگاهی مردم بود.
مرحله دوم: تأسیس وزارت انرژیهای غیرمرسوم در سال 1992 بود که پس از آن مؤسسات و سازمانهای زیادی درخصوص تأمین سوختهای مناطق مختلف و با هدف افزایش اشتغال در مراکز روستایی و محلی مشغول فعالیت شدند.
مرحله سوم: فعالیتهای جاری به صورت منسجمتری انجام شد و بر توسعه فناوریها برای تولید برق از باد، ایجاد نیروگاههای کوچک آبی، توسعه سیستمهای ترکیبی تولید انرژی از بیوگاز و بیومس تأکید شد. مجموعه این تلاشها سبب شد که از بار مشکلات و سختیهای تأمین انرژی برای روستائیان و همچنین آلودگیهای زیستمحیطی در کشور هند به نحو مؤثری کاسته شود. از اقدامهای مهم انجام شده در حوزههای مختلف انرژ یهای تجدیدپذیر در هند میتوان موارد زیر را نام برد (عدل، 1378):
در سال 200 در هندوستان انرژی بیومس حدود یکسوم کل انرژی مصرفی کشور را به خود اختصاص میداد، که 90 درصد آن در مراکز روستایی و 10 درصد در مراکز شهری به مصرف میرسید. واحدهای تولید بیوگاز در کشور هند رواج زیادی پیدا کرده است، به طوری که هماکنون برای روشنایی منازل و یا معابر نیز در روستاها مصرف می-شود. پسماندهای گیاهی نیشکر از منابع تولید انرژی است که نوعی انرژی بیومس بوده و میتوان تولید انرژی برق حاصل از آن را تا 340 مگاوات در هند افزایش داد. دولت هند در صدد است تا طرحهای استفاده از این نوع انرژی را در نواحی مختلف کشور گسترش دهد. از سال 2000 تا سال 2010 میزان مصر
منابع
ثقفی، محمود (1382) " انرژیهای تجدید پذیر نوین". انتشارات امیرکبیر، چاپ دوم.
عدل، مهرداد (1378) "برآورد قابلیتهای تولید انرژی از زائدات زیستی". پایان نامه کارشناسی ارشد، دانشکده محیط زیست، دانشگاه تهران.
قارداشی، ابوالقاسم علی و مهرداد، عدل (1379)""گزارش بررسی اقتصادی پروژه زیست توده" .گروه انرژیهای نو، پژوهشگاه نیرو.
قارداشی، ابوالقاسمعلی و عدل، مهرداد (1380) "بیوگاز در ایران". سومین همایش ملی انرژی