فروشگاه اینترنتی نفیس فایل

خرید، فروش و بازاریابی فایل های قابل دانلود. مرجع بزرگ دانلود پاورپوینت، جزوه درسی و انواع فایل های دانلودی

فروشگاه اینترنتی نفیس فایل

خرید، فروش و بازاریابی فایل های قابل دانلود. مرجع بزرگ دانلود پاورپوینت، جزوه درسی و انواع فایل های دانلودی

مروری بر بزرگترین نیروگاه های خورشیدی جهان


مروری-بر-بزرگترین-نیروگاه-های-خورشیدی-جهان
مروری بر بزرگترین نیروگاه های خورشیدی جهان
فرمت فایل دانلودی: .pdf
فرمت فایل اصلی: pdf
تعداد صفحات: 13
حجم فایل: 1524
قیمت: 2500 تومان

بخشی از متن:
در این پروژه با استفاده از مقاله ای به همین نام به بررسی بزرگترین نیروگاه های خورشیدی از نوع متمرکز کننده پرداخته شده است. این نیروگاه ها با توجه به بحران انرژی در جهان در چند سال اخیر بسیار مورد توجه قرار گرفته اند.

دانلود فایلپرداخت با کلیه کارتهای عضو شتاب امکان پذیر است.

انرژی خورشیدی


انرژی-خورشیدی
انرژی خورشیدی
فرمت فایل دانلودی: .zip
فرمت فایل اصلی: docx
تعداد صفحات: 118
حجم فایل: 534
قیمت: 7700 تومان

بخشی از متن:
این تحقیق در مورد انرژی خورشیدی در118صفحه و در قالب ورد و شامل انرژی خورشیدی ،کاربردهای انرژی خورشید،انرژی فتوولتائیک، انرژی حرارتی خورشید،نیروگاه‌های حرارتی خورشید از نوع سهموی خطی،نیروگاه‌های حرارتی از نوع دریافت کننده مرکزی،نیروگاه‌های حرارتی از نوع بشقابی،مزایای نیروگاه‌های خورشیدی،دودکش‌های خورشیدی،اجاق‌های خورشیدی، و غیره می باشد.

فهرست

مقدمه. 5
انرژی خورشیدی.. 6
تاریخچه. 6
کاربردهای انرژی خورشید.. 7
انرژی فتوولتائیک..... 7
استفاده از انرژی حرارتی خورشید.. 9
کاربردهای نیروگاهی.. 9
نیروگاه‌های حرارتی خورشید از نوع سهموی خطی.. 10
نیروگاه‌های حرارتی از نوع دریافت کننده مرکزی.. 11
نیروگاه‌های حرارتی از نوع بشقابی.. 12
دودکش‌های خورشیدی.. 12
مزایای نیروگاه‌های خورشیدی.. 13
کاربردهای غیر نیروگاهی.. 14
سیستمهای فتوولتاییک..... 16
مزایا و معایب... 19
تمرکز نور خورشید.. 21
توان خورشیدی مبتنی بر فضا 21
تاریخچه. 23
برخی از این نتیجه گیری های: 25
جمع‌آوری انرژی.. 27
انتقال انرژی به زمین.. 28
سرمایه‌گذاری و تأمین هزینه. 28
انتقال انرژی به زمین.. 33
توان خروجی.. 37
مزایا و معایب... 37
آتریوم. 41
پدیده ترموسیفون.. 42
مزایای شیوه‌های غیرفعال خورشیدی.. 42
فایده سامانه غیرفعال.. 42
فناوری طراحی منازل خورشیدی خودبخودی.. 44
پرتوگیر. 45
جاذب... 45
توده حرارتی.. 45
توزیع کننده. 45
کنترل.. 46
بهره مستقیم.. 46
بهره غیر مستقیم – دیوار ترومپ... 47
بهره ایزوله (فضای خورشیدی). 47
طراحی تابستانی سامانه‌های انفعالی.. 48
طراحی گزینه‌ها و ابعاد اقتصادی.. 48
توان خروجی.. 51
ساختمان وابسته به محیط زیست... 52
استفاده از انرژی خورشیدی گرمایی.. 55
کاربردهای صنعتی.. 55
نوع سهموی خطی.. 56
نوع دریافت‌کننده مرکزی.. 57
نوع بشقابی.. 58
دودکش‌های خورشیدی.. 58
نوع عدسی‌های فرزنل.. 58
کوره خورشیدی.. 58
خشک‌کن خورشیدی.. 59
خانه‌های خورشیدی.. 59
کاربردهای خانگی.. 60
آبگرمکن‌های خورشید.. 60
تهویه مطبوع خورشیدی.. 60
اجاق‌های خورشیدی.. 61
تمرکز نور خورشید.. 62
انواع سلول‌های خورشیدی.. 68
شیوه ساخت سلول‌های خورشیدی (فتوولتائیک). 68
اتلاف انرژی در یک سلول خورشیدی.. 69
چگونگی تأمین انرژی خانه با سلول خورشیدی.. 70
سلول فوتوالکتروشیمیایی.. 70
ساختار سلول.. 70
تاریخچه. 73
الکترون در سوال ذره‌ای یا موجی.. 76
ویژگی‌های استفاده از انرژی خورشیدی.. 84
نیروگاه‌های حرارتی از نوع بشقابی.. 97
دودکش‌های خورشیدی.. 97
مزایای نیروگاه های خورشیدی.. 97
طرز کار. 98
سیستم گرمایش و سرمایش خورشیدی.. 98
یک سلول فتوولتاییک..... 100
موبایل های خورشیدی.. 101
منابع. 102

مقدمه

انرژی ستاره خورشید یکی از منابع عمده انرژی در منظومه شمسی می‌باشد. طبق آخرین برآوردهای رسمی اعلام شده عمر این منبع انرژی بیش از ۱۴ میلیارد سال می‌باشد. در هر ثانیه ۲/۴ میلیون تن از جرم خورشید به انرژی تبدیل می‌شود. با توجه به جرم خورشید که حدود ۳۳۳ هزار برابر جرم زمین است. این کره نورانی را می‌توان به‌عنوان منبع عظیم انرژی تا ۵ میلیارد سال آینده به حساب آورد.

میزان دما در مرکز خورشید حدود ۱۰ تا ۱۴ میلیون درجه سانتیگراد می‌باشد که از سطح آن با حرارتی نزدیک به ۵۶۰۰ درجه و به صورت امواج الکترو مغناطیسی در فضا منتشر می‌شود.

زمین در فاصله ۱۵۰ میلیون کیلومتری خورشید واقع است و ۸ دقیقه و ۱۸ ثانیه طول می‌کشد تا نور خورشید به زمین برسد؛ بنابراین سهم زمین در دریافت انرژی از خورشید میزان کمی از کل انرژی تابشی آن می‌باشد. سرمنشاء تمام اشکال مختلف انرژیهای شناخته شده تاکنون شامل (سوختهای فسیلی ذخیره شده درزمین، انرژی‌های بادی، آبشارها، امواج دریاها و...) موجود در کره زمین از خورشید می‌باشد.

انرژی خورشید همانند سایر انرژی‌ها بطور مستقیم یا غیر مستقیم می‌تواند به دیگر اشکال انرژی تبدیل شود، همانند گرما و الکتریسیته و... ولیکن موانعی شامل (ضعف علمی و تکنیکی در تبدیل بعلت کمبود دانش و تجربه میدانی - متغیر و متناوب بودن مقدار انرژی به دلیل تغییرات جوی و فصول سال و جهت تابش - محدوده توزیع بسیار وسیع) موجب گردیده تا استفاده کمی از این انرژی صورت گیرد.

استفاده ازمنابع عظیم انرژی خورشید برای تولید انرژی الکتریسته، استفاده دینامیکی، ایجاد گرمایش محوطه‌ها و ساختمانها، خشک کردن تولیدات کشاورزی و تغییرات شیمیایی و... اخیراً شروع گردیده‌است.

انرژی خورشیدی

انرژی خورشیدی منحصربه‌فردترین منبع انرژی تجدیدپذیر در جهان است و منبع اصلی تمامی انرژی‌های موجود در زمین می‌باشد. انرژی خورشیدی به صورت مستقیم و غیرمستقیم می‌تواند به اشکال دیگر انرژی تبدیل گردد. به‌طور کلی انرژی متصاعد شده از خورشیدی در حدود ۳٫۸ در ۱۰۲۳ کیلووات در ثانیه می‌باشد.

ایران با داشتن حدود ۳۰۰ روز آفتابی در سال جزو بهترین کشورهای دنیا در زمینه پتانسیل انرژی خورشیدی در جهان می‌باشد. با توجه به

دانلود فایلپرداخت با کلیه کارتهای عضو شتاب امکان پذیر است.

کتاب انرژی های نوین


کتاب-انرژی-های-نوین
کتاب انرژی های نوین
فرمت فایل دانلودی: .zip
فرمت فایل اصلی: docx
تعداد صفحات: 390
حجم فایل: 25173
قیمت: 12000 تومان

بخشی از متن:
6 -ضرورت استفاده از انرژی های نوین: 29
6-1- انواع انرژی‌های تجدید و میزان بهره برداری از آنها در جهان : 31
6-2- معرفی اجمالی انواع انرژی های نوین: 32
6-2-1-انرژی خورشیدی و ساختار آن000 000 32
6-3- کاربردهای انرژی خورشید. 34
6-4- استفاده از انرژی حرارتی خورشید. 34
6-4-1-کاربردهای نیروگاهی000000 34
6-4-2-نیروگاههای حرارتی خورشید از نوع سهموی خطی000000 35
6-4-3-نیروگاههای حرارتی از نوع دریافت کننده مرکزی000000 36
6-4-4- نیروگاه‌های حرارتی از نوع بشقابی0000000 37
6-4-5-دودکش‌های خورشیدی00000 37
6-4-5-1-مزایای نیروگاههای خورشیدی000 37
6-4-6-کاربردهای غیر نیروگاهی00000000 38
6-5- انرژی فتوولتائیک و ساختار آن. 41
6-5-1-1-ب-مصرف کننده با بار الکتریکی0000000 43
6-5-2-مصارف و کاربردهای انرژی فتوولتائیک به طور مختصر از این قرارند:00 43
6-6- انرژی باد 44
6-7- تاریخچه 45
6-8- برق بادی در مقیاس‌های کوچک.. 49
6-8-1-استفاده از زمین برای ساخت توربین0000 49
6-9- بزرگترین توربین بادی جهان. 50
6-10- انرژی زمین‌گرمایی. 50
6-11- انواع فناوریهای تبدیل. 51
6-11-1-نیروگاه‌های بخار خشک0000 51
6-11-2-نیروگاه‌های تبدیل به بخار سیال (Flash Steam) 52
6-11-3-نیروگاه چرخه دوگانه00000 52
6-12- مزایای انرژی زمین گرمایی. 52
6-13- معایب انرژی زمین گرمایی. 53
6-14- نیروگاه زمین گرمایی در ایران. 54
6-15- انرژی جزر و مد. 54
6-16 نرژی امواج دریا 57
6-17- طبقه بندی امواج دریا 58
6-18 نیروی برق‌آبی. 59
6-19 زیست‌توده 62
6-19-1-ساختار شیمیایی زیست توده000000 62
6-20- محدودیتهای انرژیهای تجدید پذیر 63
7 -معرفی بیوگاز 64
7-1- تاریخچه تولید بیوگاز 67
7-2- منابع زیست توده جهت تولید بیوگاز 69
7-3- مهمترین منابع زیست توده که در تولید بیوگاز نقش دارند: 71
7-3-1-فضولات دامپروری :0000 71
7-3-2-ضایعات کشاورزی :000000 71
7-3-3-ضایعات صنایع غذایی00000 73
7-3-4-پتانسیل تولید بیوگاز از مواد مختلف از این قرار است:000000 74
7-3-5-چکیده پتانسیل تولید بیوگاز از زائدات کشاورزی در 35 درجه 00 74
7-3-6-جدول مقایسه خواص برخی گازهای رایج با بیوگاز00 0 75
7-3-7-جدول مقایسه بیوگاز با سایر مواد سوختی00000 76
7-4- انواع واکنشها برای حذف مواد آلی: 78
7-5- اصول هضم بی هوازی: 79
7-6- مراحل و واکنش های تولید بیوگاز: 84
7-7- دلایل ارجحیت بیوگاز به سایر انرژیهای تجدید پذیر: 89
7-8- معایب سیستم بیوگاز: 100
7-9- پارامترهای مؤثر بر فرآیند هضم بی‎ هوازی و تولید بیوگاز: 101
7-10- بیوگاز و کود حاصله از آن: 113
7-11- برخی از خصوصیات کود بیوگازی: 114
7-12- مراحل ساخت واحد بیوگاز با تمام جزئیات آن: 120
7-12-1-روش های انجام آزمایش:00000 121
7-12-2-آیتمهایی که باید در طول زمان آزمایش اندازه گیری و بررسی شوند؟00000 122
7-13- مرداب های مصنوعی. 129
7-14- تولید انرژی. 130
7-15- بیوگاز و برق حاصل از آن: 131
7-16- مزایای بیوگاز: 134
7-16-1-امنیت انرژی 135
7-16-2بیوگاز همچنین دارای منافع عمومی زیر می باشد: 136
8 -لندفیل. 141
8-1- پسماند چیست؟ 143
8-2- فرآیند تولید بیوگاز در لندفیل. 148
8-3- ساختار کلی لندفیل های مدرن. 149
8-4- تکنیکهای مختلف جمع آوری گاز لندفیل ها 150
8-5- طراحی گودالهای دفن زباله ‏ 154
8-6- سیستمهای جمع آوری گاز غیرفعال: ‏ 158
8-7- طرح مناسب لندفیل ها 159
8-8- فراورده های جانبی لندفیل: 160
هزینه احداث لندفیل. 160
9 -بیومس.. 152
9-1- معرفی بیومس: 152
9-2- فرآیندهای تبدیل انرژی بیومس و کاربرد های آنها: 157
9-3- روشهای تبدیل بیومس به انرژی قابل استفاده: 158
9-4- انواع نیروگاههای بیومس: 159
10 -بیوگاز در جهان 152
10-1- کره 157
10-2- چین. 158
10-3- پاکستان. 162
10-4- نیجریه 162
10-5- ژاپن. 163
10-6- سوئد. 164
10-7- فیلیپین. 165
10-8- گواتما 166
10-9- انگلیس.. 167
10-10- برزیل. 167
10-11- آلمان. 168
10-12 نروژ 169
10-13- ایران. 170
11 -انرژی و وضعیت آن در ایران 152
11-1- چگونگی توزیع مصرف انرژی در ایران. 195
11-2 وضعیت و پتانسیل های فعلی توزیع انواع حامل های انرژی. 196
11-3 مزایای تدوین طرح جامع انرژی. 197
12 - نگاهی به تاریخچة بیوگاز در ایران 201
12-1- تحقیقات انجام شده در ایران در زمینه بیوگاز: 203
12-2- پتانسیل تولید بیوگاز در ایران. 203
12-3- بیوگاز را می توان از تخمیر سه گونه زیست توده بدست آورد: 204
12-4- منابع تولید بیوگاز 207
12-5- اولویتهای استفاده از بیوگاز در ایران. 208
12-6- عوامل بازدارنده در گسترش فن‎آوریهای تولید بیوگاز در ایران. 209
12-7- علل و ضرورت امکان استفاده از بیوگاز در ایران: 212
12-8- استفاده بهینه از دستگاههای بیوگاز در ایران. 213
12-9 پیشنهاداتی برای سیاست گزاری. 214
12-10- مزایای بیوگاز 215
12-11- محدودیت ها 218
12-12- نتیجه گیری. 218
13 -فناوری بیوگاز در مقیاس شهری. 221
13-1- رآکتورهای بی هوازی. 222
13-2- بازیابی فاضلاب. 226
13-2-1-1-آرایش اصلی دستگاه های بیوگاز0000000000 228
13-3- طراحی دستگاه های بیوگاز: 228
13-4- قسمتهای مختلف یک سایت بیوگاز 230
13-5- ساختار کلی دستگاههای تولید بیوگاز: 231
13-6- جاذب های بیوگاز 233
13-7- حوضچه ورودی: 234
13-8- حوضچه خروجی: 235
13-9- تانک تخمیر 236
13-10- محفظه گاز: 238
13-11- انواع راکتورها 242
13-11-1-راکتور آزمایشگاهی:00000000 242
13-11-2-راکتور نیمه صنعتی:0000 242
13-12- دوام و بقا : 243
13-13- طرح ریزی دستگاه های بیوگاز: 244
13-14- جاذب های افقی. 248
13-15- دستگاه مشترک بیوگاز 248
13-16- جاذب عمودی استاندارد کشاورزی. 249
13-17- جاذب عمومی بزرگ: 250
13-18- دستگاه بیوگاز با سرپوش گاز و مخزن تخمیری به صورت واحد و با حجم ثابت (مدل چینی) :‏ 251
13-19- دستگاه های چینی بیو گازی با قبه –ثابت: 254
13-20- دستگاه بیوگاز با سرپوش شناور (مدل هندی) ‏ 257
13-21- دستگاه بیوگاز در مدل تایوانی. 264
13-22- واحدهای بالونی: 264
13-23- دستگاه بیوگاز نوع فرانسوی. 265
13-24- دستگاه بیوگاز با لوله های چرمی. 266
13-25- دستگاه بیوگازی با کیسه ی پلی اتیلن. 268
13-26- انواع واحدهای ساخته شده در ایران. 269
13-27- در یک تقسیم بندی دیگر دستگاههای بیوگاز به دو گروه تقسیم می شوند: 271
13-28- انواع هاضمهای بیهوازی. 272
13-28-1-ناپیوسته:(Batch)..................... 272
13-28-2-پیوسته:(Continious)00000000 272
13-28-3-نیمه پیوسته continious) :(Semi0000 272
13-29- بارگیری (loading): استفاده از سیستم بیوگاز و دستگاه تخمیر به دو صورت انجام می گیرد: 273
13-29-1-سیستم بسته (bach type ):0 273
13-29-2-سیستم پیوسته (continues type ) :00 274
13-30- طراحی سیستم تولید بیوگاز: 275
13-30-1-حوضچه رسوب:0000 275
13-30-2-هاضم:0000000000 275
13-30-3-مخزن گاز:00000 275
13-30-4-ابعاد مخزن گاز:000000000 276
13-30-5-استفاده از گاز تولیدی:000000 276
13-31- معرفی بخشهای مختلف نیروگاه بیوگازی. 277
13-31-1-بخش تفکیک زباله و تامین پسماندهای آلی 000000 277
13-31-2-واحد هضم بیهوازی و تولید بیوگاز0000000 277
13-31-3-واحد تولید برق و حرارت000000000000 278
13-31-4-سایر واحدها00000000 278
13-32 مقیاس سیستمهای بیوگاز 279
13-32-1-سیستم بیوگاز خانگی )کوچک(0000000 279
13-32-2-سیستم بیوگاز متوسط00000000 280
13-32-3-سستم بیوگاز بزرگ000000 281
14 -جمع آوری گاز و کاربردهای آن 283
14-1- وسایل تعیین حجم گاز تولیدی و آنالیز بیوگاز 284
14-2-جداسازی انواع ناخالصی ها از گاز زیستی. 284
14-2-1-سولفورزدایی :00000000 284
14-2-2-رطوبت گیری:00000 287
14-2-3-زدودن دی اکسید کربن :00000 287
14-2-4-فشرده سازی گاز تولیدی 00000000 287
14-3- گازی که از دستگاه هاضم حاصل می گردد دارای مصارف و کاربردهای زیادی می باشد از جمله: 287
14-4- سوخت خانگی. 292
14-5- مصرف وسایل مختلف در یک خانه روستایی مدرن به قرار زیر ارزیابی می شود: 293

دانلود فایلپرداخت با کلیه کارتهای عضو شتاب امکان پذیر است.

پاورپوینت انرژی خورشیدی و شبکه های الکترونیکی خورشیدی


پاورپوینت-انرژی-خورشیدی-و-شبکه-های-الکترونیکی-خورشیدی
پاورپوینت انرژی خورشیدی و شبکه های الکترونیکی خورشیدی
فرمت فایل دانلودی: .zip
فرمت فایل اصلی: pptx
تعداد صفحات: 100
حجم فایل: 9616
قیمت: 8000 تومان

بخشی از متن:
•شناخت انرژی خورشیدی و استفاده از آن برای منظورهای مختلف به زمان ماقبل تاریخ باز می‌گردد. شاید به دوران سفالگری در آن هنگام روحانیون معابد به کمک جامهای بزرگ طلائی صیقل داده شده و اشعه خورشید آتشدانهای محرابها را روشن می‌کردند. یکی از فراعنه مصر معبدی ساخته بود که با طلوع خورشید درب آن باز و با غروب خورشید درب بسته می‌شد.

•ولی مهم‌ترین روایتی که درباره استفاده از خورشید بیان شده داستان ارشمیدس دانشمند و مخترع بزرگ یونان قدیم می‌باشد که ناوگان روم را با استفاده از انرژی حرارتی خورشید به آتش کشید. گفته می‌شود که ارشمیدس با نصب تعداد زیادی آئینه‌های کوچک مربعی شکل در کنار یکدیگر که روی یک پایه متحرک قرار داشته ‌است اشعه خورشید را از راه دور روی کشتی­های رومیان متمرکز ساخته و به این ترتیب آنها را به آتش کشیده‌ است. در ایران نیز معماری سنتی ایرانیان باستان نشان دهنده توجه خاص آنان در استفاده صحیح و مؤثر از انرژی خورشید در زمان‌های قدیم بوده ‌است.


•با وجود آنکه انرژی خورشید و مزایای آن در قرون گذشته به خوبی شناخته شده بود ولی بالا بودن هزینه اولیه چنین سیستم­هایی از یک طرف و عرضه نفت و گاز ارزان از طرف دیگر سد راه پیشرفت این سیستمها شده بود تا اینکه افزایش قیمت نفت در سال ۱۹۷۳ باعث شد که کشورهای پیشرفته صنعتی مجبور شدند به مسئله تولید انرژی از راههای دیگر (غیر از استفاده سوختهای فسیلی) توجه جدی‌تری نمایند.
•آرایه انرژی ستاره خورشید یکی از منابع عمده انرژی در منظومه شمسی میباشد. طبق آخرین برآوردهای رسمی اعلام شده عمر خورشد بیش از 14 میلیارد سال میباشد. در هر ثانیه ۲/۴ میلیون تن از جرم خورشید به انرژی تبدیل می‌شود. با توجه به وزن خورشید که حدود ۳۳۳ هزار برابر وزن زمین است. این کره نورانی را می‌توان به‌عنوان منبع عظیم انرژی تا ۵ میلیارد سال آینده به حساب آورد. خورشید از گازهایی نظیر هیدروژن (۸/۸۶ درصد) هلیوم (۳ درصد) و ۶۳ عنصر دیگر که مهم‌ترین آنها اکسیژن، کربن، نئون و نیتروژن است تشکیل شده‌است. میزان دما در مرکز خورشید حدود ۱۰ تا ۱۴ میلیون درجه سانتیگراد می‌باشد که از سطح آن با حرارتی نزدیک به ۵۶۰۰ درجه و به صورت امواج الکترو مغناطیسی در فضا منتشر می‌شود.

انرژی خورشید همانند سایر انرژی‌ها بطور مستقیم یا غیر مستقیم می‌تواند به دیگر اشکال انرژی تبدیل شود، همانند گرما و الکتریسیته و... ولیکن موانعی شامل (ضعف علمی و تکنیکی در تبدیل بعلت کمبود دانش و تجربه میدانی - متغیر و متناوب بودن مقدار انرژی به دلیل تغییرات جوی و فصول سال و جهت تابش - محدوده توزیع بسیار وسیع) موجب گردیده تا استفاده کمی از این انرژی صورت گیرد.

استفاده ازمنابع عظیم انرژی خورشید برای تولید انرژی الکتریسته، استفاده دینامیکی، ایجاد گرمایش محوطه‌ها و ساختمانها، خشک کردن تولیدات کشاورزی و تغییرات شیمیایی و... اخیراً شروع گردیده‌است.

انرژی خورشیدی

انرژی خورشیدی منحصربه‌فردترین منبع انرژی تجدیدپذیر در جهان است و منبع اصلی تمامی انرژی‌های موجود در زمین می‌باشد. انرژی خورشیدی به صورت مستقیم و غیرمستقیم می‌تواند به اشکال دیگر انرژی تبدیل گردد. به‌طور کلی انرژی متصاعد شده از خورشیدی در حدود ۳٫۸ در ۱۰۲۳ کیلووات در ثانیه می‌باشد.

ایران با داشتن حدود ۳۰۰ روز آفتابی در سال جزو بهترین کشورهای دنیا در زمینه پتانسیل انرژی خورشیدی در جهان می‌باشد. با توجه به موقعیت جغرافیای ایران و پراکندگی روستای در کشور، استفاده از انرژی خورشیدی یکی از مهمترین عواملی است که باید مورد توجه قرار گیرد. استفاده از انرژی خورشیدی یکی از بهترین راه‌های برق رسانی و تولید انرژی در مقایسه با دیگر مدل‌های انتقال انرژی به روستاها و نقاط دور افتاده در کشور از نظر هزینه، حمل‌نقل، نگهداری و عوامل مشابه می‌باشد.

با توجه به استانداردهای بین‌المللی اگر میانگین انرژی تابشی خورشید در روز بالاتر از ۳٫۵ کیلووات ساعت در مترمربع (۳۵۰۰ وات/ساعت) باشد استفاده از مدلهای انرژی خورشیدی نظیر کلکتورهای خورشیدی یا سیستم‌های فتوولتائیک بسیار اقتصادی و مقرون به صرفه است.

در بسیاری از قسمتهای ایران انرژی تابشی خورشید بسیار بالاتر از این میانگین بین‌المللی می‌باشد و در برخی از نقاط حتی بالاتر از ۷ تا ۸ کیلو وات ساعت بر مترمربع اندازه‌گیری شده است ولی بطور متوسط انرژی تابشی خورشید بر سطح سرزمین ایران حدود ۴٫۵ کیلو وات ساعت بر مترمربع است.

تاریخچه

شناخت انرژی خورشیدی و استفاده از آن برای منظورهای مختلف به زمان ماقبل تاریخ باز می‌گردد. شاید به دوران سفالگری، در آن هنگام روحانیون معابد به کمک جام‌های بزرگ طلائی صیقل داده شده و اشعه خورشید، آتشدان‌های محرابها را روشن می‌کردند. یکی از فراعنه مصر معبدی ساخته بود که با طلوع خورشید درب آن باز و با غروب خورشید درب بسته می‌شد.

ولی مهم‌ترین روایتی که دربارهٔ استفاده از خورشید بیان شده داستان ارشمیدس دانشمند و مخترع بزرگ یونان قدیم می‌باشد که ناوگان روم را با استفاده از انرژی حرارتی خورشید به آتش کشید گفته می‌شود که ارشمیدس با نصب تعداد زیادی آئینه‌های کوچک مربعی شکل در کنار یکدیگر که روی یک پایه متحرک قرار داشته‌است اشعه خورشید را از راه دور روی کشتی‌های رومیان متمرکز ساخته و به این ترتیب آنها را به آتش کشیده‌است. در ایران نیز معماری سنتی ایرانیان باستان نشان دهنده توجه خاص آنان در استفاده صحیح و مؤثر از انرژی خورشید در زمان‌های قدیم بوده‌است.

با وجود آنکه انرژی خورشید و مزایای آن در قرون گذشته به خوبی شناخته شده بود ولی بالا بودن هزینه اولیه چنین سیستم‌هایی از یک طرف و عرضه نفت و گاز ارزان از طرف دیگر سد راه پیشرفت این سیستم‌ها شده بود تا اینکه افزایش قیمت نفت در سال ۱۹۷۳ باعث شد که کشورهای پیشرفته صنعتی مجبور شدند به مسئله تولید انرژی از راه‌های دیگر (غیر از استفاده سوختهای فسیلی) توجه جدی‌تری نمایند.

کاربردهای الکتریکی فتو ولتایک‌ها را آزمایش می‌کنند، یک فرایند که توسط آن انرژی نور خورشید به طور مستقیم به الکتریسیته تبدیل می‌شود. الکتریسیته می‌تواند به طور مستقیم از انرژی خورشید تولید شود و ابزارهای فتوولتایک استفاده کند یا به طور غیر مستقیم از ژنراتورهای بخار ذخایر حرارتی خورشیدی را برای گرما بخشیدن به یک سیال کاربردی مورد استفاده قرار می‌دهند.

کاربردهای انرژی خورشید

در عصر حاضر از انرژی خورشیدی توسط سیستم‌های مختلف استفاده می‌شود که عبارت‌اند از:

استفاده از انرژی حرارتی خورشید برای مصارف خانگی، صنعتی و نیروگاهی.
تبدیل مستقیم پرتوهای خورشید به الکتریسیته بوسیله تجهیزاتی به نام فتوولتائیک.
انرژی فتوولتائیک

انرژی فتوولتاییک به تبدیل نور خورشید به الکتریسیته از طریق یک سلول فوتوولتاییک (pvs) گفته می‌شود، که به طور معمول توسط یک سلول خورشیدی انجام می‌پذیرد. سلول خورشیدی یک ابزار غیر مکانیکی است که معمولاً از آلیاژ سیلیکون ساخته می‌شود.

نور خورشید از فوتون‌ها یا ذرات انرژی خورشیدی ساخته شده‌است. این فوتون‌ها که مقادیر متغیر انرژی را شامل می‌شوند، درست مشابه با طول موجهای متفاوت طیف‌های نوری هستند.

وقتی فوتون‌ها به یک سلول فوتوولتاییک برخورد می‌کنند، ممکن است منعکس شوند، مستقیم از میان آن عبور کنند و یا جذب شوند. فقط فوتون‌های جذب شده انرژی را برای تولید الکتریسیته فراهم می‌کنند. وقتی که نور خورشید کافی یا انرژی توسط جسم نیمه رسانا جذب شود، الکترون‌ها از اتم‌های جسم جدا می‌شوند. (به دلیل اینکه آخرین الکترون یک اتم با گرفتن انرزی فوتون به لایه بالاتر رفته و می‌تواند از میدان پروتون خلاص شده و آزادانه در نیمه رسانا حرکت کند)

ویژگی سطح جسم در طول ساختن باعث می‌شود سطح جلویی سلول برای الکترون‌های آزاد پذیرا تر باشد. بنا براین الکترون‌ها بطور طبیعی به سطح مهاجرت می‌کنند.

زمانی که الکترون‌ها موقعیت n را ترک می‌کنند، سوراخ‌هایی شکل می‌گیرد. تعداد الکترونها زیاد بوده و هر کدام یک بار منفی را حمل می‌کنند و به طرف جلو سطح سلول پیش می‌روند، در نتیجه عدم توازون بار بین سلولهای جلویی وسطوح عقبی یک پتانسیل ولتاژ شبیه قطب‌های مثبت ومنفی یک باتری ایجاد می‌شود.

وقتی که دو سطح از میان یک راه داخلی مرتبط می‌شود، الکتریسیته جریان می‌باشد

با این وجود، توان ۱یا ۲ وات تولید می‌کند، که برای بیشتر کار بردها این مقدار از انرژی کافی نیست. برای اینکه بازده انرژی را افزایش دهیم، سلولها بطور الکتریکی به داخل هوای بسته یک مدول سخت مرتبط می‌شود.

این فوتون است

اصطلاح آرایش به کل صفحه انرژی اشاره می‌کند، اگر چه آن از یک یا چند هزار مدول ساخته شده باشد، آن تعداد مدولهای مورد نیاز می‌توانند بهم مرتبط شوند برای اینکه اندازه آرایش مورد نیاز (تولید انرژی) را تشکیل دهند. اجرای یک آرایش فوتوولتاییک به انرژی خورشید وابسته‌است.

شرایط آب وهوایی (همانند ابر و مه) تأثیر مهمی روی انرزی خورشیدی دریافت شده توسط یک آرایش pv و در عوض، اجرایی آن دارد. بیشتر تکنولوژی مدول‌های فوتوولتاییک در حدود ۱۰ درصد مؤثر هستند در تبدیل انرژیخورشید با تحقیق بیشتر مرتبط شوند برای اینکه این کار را به ۲۰ درصدافزایش دهند.

سلولهای pv که در سال ۱۹۵۴ توسط تحقیقات تلفنی بل bell کشف شد حساسیت یک آب سیلیکونی حاضر به خورشید را به طور خاصی آزمایش کرد. ابتدا در گذشته در دهه ۱۹۵۰،pvs برای تأمین انرژی قمرهای فضا در یک مورد استفاده قرار گرفتند.

موفقیت pvs در فضا کار بردهای تجاری برای تکنو لوژی pvs تولید کرد. ساده‌ترین سیستم‌های فوتوولتاییک انرژی تعداد زیادی از ماشین حساب‌های کوچک و ساعتهای مچی که روزانه مورد استفاده قرار می‌گیرد را تأمین می‌کند.

بیشتر سیستم‌های پیچیده الکتریسیته را برای پمپاژ آب، انرژی ابزارهای ارتباطی، وحتی فراهم کردن الکتریسیته برای خانه هایمان فراهم می‌کنند.

تبدیل فوتوولتاییک به چندین دلیل مفید است. تبدیل نور خورشیدبه الکتریسیته مستقیم است، بنابراین سیستم‌های تولید کننده مکانیکی به حجم زیادی لازم نیستند. خصوصیت مدولی انرژی فوتوولتاییک اجازه می‌دهد به طور سریع آرایش‌ها در هر اندازه مورد نیاز یا اجازه داده شده نصب شوند.

همچنین، تأثیر محیطی یک سیستم فوتوولتاییک حد اقل است، آب را برای سیستم نیاز ندارد پختن و تولید محصول فرعی نیست. سلولهای فتوولتاتیک، همانند باتریها، جریان مستقیم (dc)را تولید می‌کنند که به طور عمومی برای برای راه‌های کوچکی مورد استفاده‌است (ابزار الکترونیک). وقتی که جریان مستقیم از سلولهای فتوولتاتیک برای کاربردهای تجاری یا لحیم کردن کار بردهای الکتریکی استفاده می‌شود. راندمان سلولهای فتوولتایک در سال ۲۰۱۰ حدود ۱۷٪ می‌باشد و توان آن در تابش مستقیم آفتاب (۱۰۰۰ وات بر متر مربع) به ازای هر متر مربع حدود ۱۷۰ وات است.

شبکه‌های الکتریکی بایستی به جریان متناوب (AC)برای استفاده تبدیل کننده‌ها تبدیل شوند، Inverterها ابزارهایی هستند که جریان مستقیم را به جریان متناوب تبدیل می‌کنند. به طور تاریخی PVS در جاهای دور برای تولید الکتریسیته بکار گرفته شده‌است. با این وجود یک بازار برای تولید از PVS را توزیع کنند ممکن است با بی نظمی قیمتهای تبدیل و توزیع همزمان با بی نظمی الکتریکی توسعه داده شود.

جایگزین ژنراتوهای کوچک مقیاس عددی در تغذیه کنندهای الکتریکی می‌توانند اقتصاد واعتبار سیستم توزیع را بهبود بخشد.

استفاده از انرژی حرارتی خورشید

این بخش از کاربردهای انرژی خورشید شامل دو گروه نیروگاهی و غیر نیروگاهی می‌باشد.

کاربردهای نیروگاهی

تأسیساتی که با استفاده از آنها انرژی جذب شده حرارتی خورشید به الکتریسیته تبدیل می‌شود نیروگاه حرارتی خورشیدی نامیده می‌شود این تأسیسات بر اساس انواع متمرکز کننده‌های موجود و بر حسب اشکال هندسی متمرکز کننده‌ها به سه دسته تقسیم می‌شوند:

نیروگاه‌هایی که گیرنده آنها آینه‌های سهموی ناودانی هستند
نیروگاه‌هایی که گیرنده آنها در یک برج قرار دارد و نور خورشید توسط آینه‌های بزرگی به نام هلیوستات به آن منعکس می‌شود. (دریافت کننده مرکزی)
نیروگاه‌هایی که گیرنده آنها بشقابی سهموی (دیش) می‌باشد
قبل از توضیح در خصوص نیروگاه خورشیدی بهتر است شرح مختصری از نحوه کارکرد نیروگاه‌های تولید الکتریسیته داده شود. بهتر است بدانیم در هر نیروگاهی اعم از نیروگاه‌های آبی، نیروگاه‌های بخاری و نیروگاه‌های گازی برای تولید برق از ژنراتورهای الکتریکی استفاده می‌شود که با چرخیدن این ژنراتورها برق تولید می‌شود. این ژنراتورهای الکتریکی انرژی دورانی خود را از دستگاهی بنام توربین تأمین می‌کنند. بدین ترتیب می‌توان گفت که ژنراتورها انرژی جنبشی را به انرژی الکتریکی تبدیل می‌کنند. تأمین کننده انرژی جنبشی ژنراتورها، توربین‌ها هستند که انواع مختلف دارند. در نیروگاه‌های بخاری توربین‌هایی وجود دارند که بخار با فشار و دمای بسیار بالا وارد آنها شده و موجب به گردش در آمدن پره‌های توربین می‌گردد. در نیروگاه‌های آبی که روی سدها نصب می‌شوندانرژی پتانسیل موجود در آب موجب به گردش در آمدن پره‌های توربین می‌شود.

بدین ترتیب می‌توان گفت در نیروگاه‌های آبی انرژی پتانسیل آب به انرژی جنبشی و سپس به الکتریکی تبدیل می‌شود، در نیروگاه‌های حرارتی بر اثر سوختن سوختهای فسیلی مانند مازوت، آب موجود در سیستم بسته نیروگاه داخل دیگ بخار (بویلر) به بخار تبدیل می‌شود و بدین ترتیب انرژی حرارتی به جنبشی و سپس به الکتریکی تبدیل می‌شود در نیروگاه‌های گازی توربینهایی وجود دارد که بطور مستقیم بر اثر سوختن گاز به حرکت درآمده و ژنراتور را می‌گرداند و انرژی حرارتی به جنبشی و سپس به الکتریکی تبدیل می‌شود؛ و اما در نیروگاه‌های حرارتی خورشیدی وظیفه اصلی بخش‌های خورشیدی تولید بخار مورد نیاز برای تغذیه توربینها است یا به عبارت دیگر می‌توان گفت که این نوع نیروگاه‌ها شامل دو قسمت هستند:

سیستم خورشیدی که پرتوهای خورشید را جذب کرده و با استفاده از حرارت جذب شده تولید بخار می‌نماید.
سیستمی موسوم به سیستم سنتی که همانند دیگر نیروگاه‌های حرارتی بخار تولید شده را توسط توربین و ژنراتور به الکتریسیته تبدیل می‌کند.
نیروگاه‌های حرارتی خورشید از نوع سهموی خطی

در این نیروگاه‌ها، از منعکس کننده‌هایی که به صورت سهموی - خطی می‌باشند جهت تمرکز پرتوهای خورشید در خط کانونی آنها استفاده می‌شود و گیرنده به صورت لوله‌ای در خط کانونی منعکس کننده‌ها قرار دارد. در داخل این لوله روغن مخصوصی در جریان است که بر اثر حرارت پرتوهای خورشید گرم و داغ می‌گردد.

روغن داغ از مبدل حرارتی عبور کرده و آب را به بخار به مدارهای مرسوم در نیروگاه‌های حرارتی انتقال داده می‌شود تا به کمک توربین بخار و ژنراتور به توان الکتریکی تبدیل گردد.

برای بهره‌گیری بیشتر و افزایش بازدهی لوله دریافت کننده سطح آن را با اکسید فلزی که ضریب بالایی دارد پوشش می‌دهند و همچنین در محیط اطراف آن لوله شیشه‌ای به صورت لفاف پوشیده می‌شود تا از تلفات گرمایی و افت تشعشعی جلوگیری گردد و نیز از لوله دریافت کننده محافظت بعمل آید.

ضمناً بین این دو لوله خلاء بوجود می‌آوردند برای آنکه پرتوهای تابشی خورشید در تمام طول روز به صورت مستقیم به لوله دریافت کننده برسد.

در این نیروگاه‌ها یک سیستم ردیاب خورشید نیز وجود دارد که بوسیله آن آینه‌های شلجمی دائماً خورشید را دنبال می‌کنند و پرتوهای آن را روی لوله دریافت کننده متمرکز می‌نمایند.

تغییرات تابش خورشید در این نیروگاه‌ها توسط منبع ذخیره و گرمکن سوخت فسیلی جبران می‌شوند. در چند کشور نظیر ایالات متحده آمریکا، اسپانیا، مصر، مکزیک، هند و مراکش از نیروگاه‌های سهموی خطی استفاده شده‌است که این نیروگاه‌ها یا در مرحله ساخت و یا در مرحله بهره‌برداری قرار دارند. در ایران نیز تحقیقات و مطالعاتی در زمینه این نیروگاه‌ها انجام شده و پروژه یک نیروگاه تحقیقاتی با ظرفیت ۳۵۰ کیلووات توسط سازمان انرژی‌های نو ایران در شیراز ساخته شده است.

کلیه مراحل مطالعاتی، طراحی و ساخت این نیروگاه به طور کامل توسط مختصصین و مهندسان ایرانی انجام شده است.

بدیهی است که با افزایش ظرفیت فنی و علمی که در اثر اجرای پروژه نیروگاه خورشیدی شیراز عاید محققین مجرب ایرانی می‌شود ایران در زمره محدود کشورهای سازنده نیروگاه‌های خورشید از نوع متمرکز کننده‌های سهموی خطی قرار خواهند گرفت.

نیروگاه‌های حرارتی از نوع دریافت کننده مرکزی

در این نیروگاه‌ها پرتوهای خورشیدی توسط مزرعه‌ای متشکل از تعداد زیادی آینه منعکس کننده بنام هلیوستات بر روی یک دریافت کننده که در بالای برج نسبتاً بلندی استقرار یافته‌است متمرکز می‌گردد. در نتیجه روی محل تمرکز پرتوها انرژی گرمایی زیادی بدست می‌آید که این انرژی بوسیله سیال عامل که داخل دریافت کننده در حرکت است، جذب می‌شود و بوسیله مبدل حرارتی به سیستم آب و بخار مرسوم در نیروگاه‌های سنتی منتقل شده و بخار فوق گرم در فشار و دمای طراحی شده برای استفاده در توربین ژنراتور تولید می‌گردد.

این سیال عامل در مبدلهای حرارتی در کنار آب قرار گرفته و موجب تبدیل آن به بخار با فشار و حرارت بالا می‌گردد. در برخی از سیستم‌ها سیال عامل آب است و مستقیماً در داخل دریافت کننده به بخار تبدیل می‌شود.

برای استفاده دائمی از این نوع نیروگاه در زمانی که تابش خورشید وجود ندارد مثلاً ساعات ابری یا شبها از سیستم‌های ذخیره کننده حرارت و یا احیاناً از تجهیزات پشتیبانی که ممکن است از سوخت فسیلی استفاده کنند جهت ایجاد بخار برای تولید برق کمک گرفته می‌شود.

مطالعات و تحقیقات در زمینه فناوری و سیستمهای این نیروگاه‌ها ادامه دارد و آزمایشگاه‌ها و مؤسسات متعددی در سراسر دنیا در این زمینه فعالیت می‌کنند.

مطالعات ساخت اولین نیروگاه خورشیدی ایران از نوع دریافت کننده مرکزی توسط سازمان انرژیهای نو ایران و با کمک شرکتهای مشاور و سازنده داخلی با ظرفیت یک مگاوات و سیال عامل آب و بخار در طالقان جریان دارد. کلیه مطالعات اولیه و پتانسیل سنجی و طراحی نیروگاه به انجام رسیده و یک نمونه هلیوستات نیز ساخته شده‌است.

نیروگاه‌های حرارتی از نوع بشقابی

در این نیروگاه‌ها از منعکس کننده‌هایی که به صورت شلجمی بشقابی می‌باشد جهت تمرکز نقطه‌ای پرتوهای خورشیدی استفاده می‌گردد و گیرنده‌هایی که در کانون شلجمی قرار می‌گیرند به کمک سیال جاری در آن انرژی گرمایی را جذب نموده و به کمک یک ماشین حرارتی و ژنراتور آن را به نوع مکانیکی و الکتریکی تبدیل می‌نماید.

دودکش‌های خورشیدی

روش دیگر برای تولید الکتریسیته از انرژی خورشید استفاده از برج نیرو یا دودکش‌های خورشیدی می‌باشد در این سیستم از خاصیت دودکش‌ها استفاده می‌شود به این صورت که با استفاده از یک برج بلند به ارتفاع حدود ۲۰۰ متر و تعداد زیادی گرم خانه‌های خورشیدی که در اطراف آن است هوای گرمی که بوسیله انرژی خورشیدی در یک گرمخانه تولید می‌شود و به طرف دودکش یا برج که در مرکز گلخانه‌ها قرار دارد، هدایت می‌شود.

این هوای گرم بعلت ارتفاع زیاد برج با سرعت زیاد صعود کرده و با عث چرخیدن پروانه و ژنراتوری که در پایین برج نصب شده‌است می‌گردد و بوسیله این ژنراتور برق تولید می‌شود هم اکنون یک نمونه از این سیستم در ۱۶۰ کیلومتری جنوب مادرید احداث گردیده که ارتفاع برج آن به ۲۰۰ متر می‌رسد.

مزایای نیروگاه‌های خورشیدی

نیروگاه‌های خورشیدی که انرژی خورشید را به برق تبدیل می‌کنند امید است در آینده با مزایای قاطعی که در برابر نیروگاه‌های فسیلی و اتمی دارند به خصوص اینکه سازگار با محیط زیستمی‌باشند، مشکل برق بخصوص

دانلود فایلپرداخت با کلیه کارتهای عضو شتاب امکان پذیر است.

پروژه پایان ترم برق(سلول خورشیدی گردان)


پروژه-پایان-ترم-برق-سلول-خورشیدی-گردان-
پروژه پایان ترم برق(سلول خورشیدی گردان)
فرمت فایل دانلودی: .zip
فرمت فایل اصلی:
تعداد صفحات: 39
حجم فایل: 1307
قیمت: 15000 تومان

بخشی از متن:

وضوع:

پروژه پایان ترم برق (سلول خورشیدی)+ نحوه ساخت عملی

     فرمت فایل: WORD (قابل ویرایش)

 چکیده

استفاده از منابع انرژی پاک روز به روز در حال افزایش است. این بدان علت است که انرژی های به دست آمده از این منابع علاوه بر اینکه نیازمندی های بشر را در زمینه های مختلف انرژی برطرف می کند، کمترین تاثیر مخرب را بر محیط زیست دارند. در این میان یکی از منابع مهم انرژی پاک، انرژی خورشیدی می باشد.

در عصر حاضر از انرژی خورشیدی توسط سیستم‌های مختلف استفاده می‌شود که عبارت‌اند از:

1. استفاده از انرژی حرارتی خورشید برای مصارف خانگی، صنعتی و نیروگاهی.

2. تبدیل مستقیم پرتوهای خورشید به الکتریسیته بوسیله تجهیزاتی به نام فتوولتائیک.

برای بهره گیری بیشتر از انرژی خورشید، از سیستم های دنبال کننده خورشیدی استفاده می شود. در این مقاله به ارائه یک سیستم ردیاب تک محوره خورشیدی مشتمل بر قسمت های سخت افزاری و نرم افزاری، پرداخته می شود.


دانلود فایلپرداخت با کلیه کارتهای عضو شتاب امکان پذیر است.

پاورپوینت-انرژی خورشیدی


پاورپوینت-انرژی-خورشیدی
پاورپوینت-انرژی خورشیدی
فرمت فایل دانلودی: .zip
فرمت فایل اصلی: pptx
تعداد صفحات: 70
حجم فایل: 3226
قیمت: 7000 تومان

بخشی از متن:
خورشید سرچشمه ی عظیم و بیکران انرژی است،که حیات زمین به آن بستگی دارد و همه ی انواع دیگر انرژی نیز به گونه ای از آن نشات گرفته اند.اگر تمام سوختهای فسیلی موجود در جهان را جمع کنیم و بسوزانیم ،این انرژی معادل تابش خورشید به زمین تنها برای 4 روز خواهد بود.و حرارت و نوری که در هر ثانیه از خورشید به زمین می رسد،میلیون ها ملیون برابر قدرت بمب اتمی منفجر شده در هیروشیما با ناکازاکی است.

هر چند استفاده از انرژی خورشیدی هنوز آن قدر که باید توسعه نیافته است، اما انرژی مورد نیاز حدود 160 هزار روستا در جهان بر پایه ی انرژی خورشیدی است.

همان گونه که می‌دانید کشور اندونزی از چندین هزار جزیره‌ی کوچک و بزرگ تشکیل شده‌است، و به کارگیری نیروگاه و خطوط انتقال در آن کشور در عمل امکان پذیر نمی‌باشد. لذا در اکثر روستاهای اندونزی انرژی خورشیدی تنها راه حل است، و به این طریق حدود 20 میلیون نفر از مردم اندونزی لازم را از طریق خورشی کسب می‌کنند.

بنابراین با تحقیقاتی که در سراسر دنیا در حال انجام است، به زودی استفاده و بهره‌برداری از نیروگاهای بزرگ خورشیدی همه‌گیر خواهد شد.

امروزه شش شیوه‌ی تولید برق از نور خورشید شناخته شده است:

آینه‌ی سهمی‌گون
دریافت کننده‌ی مرکزی
آینه‌های شلجمی (بشقابی یا یا استرلینک)
دودکش خورشیدی
استخر خورشیدی
سلولهای نوری (فتوولتاییک)
اما امروزه بیشتر با به‌کارگیری سلول‌های خورشیدی یا راه‌اندازی نیروگاههای حرارتی، انرژی خورشید را مهار می‌کنند.

نیروگاههای خورشیدی با هزینه‌ای بسیار کم، بدون تولید گازهای مخرب و بدون اشتغال فضاهای مفید، بزودی جایگزینی کامل برای نیروگاههای سوخت فسیلی خواهند بود.

کشور ما، بر کمربند خورشیدی زمین قرار دارد و یک چهارم مساحت آن را کویرهایی با شدت تابش بیش از 5 کیلو وات ساعت به متر مربع، پوشانده است که اگر یک درصد این مساحت برای ساخت نیروگاه خورشیدی با بازده 10 درصد به کا برود، تقریبا" 63 ملیون مگا وات ساعت برق (یعنی حدود 4 برابر تولید فعلی برق در کشور )تولید خواهد شد.

مهم ترین فناوری های موجود در زمینه‌ی انرژی خورشیدی حرارتی، تمرکز انرژی خورشیدی و فتوولتاییک است. سلول‌های فتوولتاییک از آفتاب سوخت می‌گیرند نه از حرارت. این سلول‌ها که غالبا" از سیلیکن نیمه‌هادی ساخته شده‌اند، نور آفتاب را مستقیما" به برق تبدیل می‌کنند.ساده‌ترین سلول‌های فتوولتاییک نیروی مورد نیاز ساعتهای مچی و ماشین حساب‌ها را تامین می‌کنند.

در فرآیند فتوولتاییک، ذرات نور که فوتون نام داشته، به داخل سلول‌ها نفوذ کرده و با آزاد کردن الکترون از اتم‌های سیلیکن جریان الکتریکی تولید می‌کنند.تا زمانی که تابش نور خورشید به داخل سلول ادامه یابد الکتریسیته تولید می‌شود. این سلول‌ها الکترون‌های خود را مانند باتری‌ها تمام نمی‌کنند، آنها مبدل‌هایی بوده که یک نوع انرژی (خورشیدی) را به نوعی دیگر (جریان الکترونها)تبدیل می‌کند.

خورشید از گازهایی نظیر هیدروژن (۷۳٫۴۶درصد) هلیوم (۲۴٫۸۵ درصد) و عناصر دیگری تشکیل شده است که از جمله آن‌ها می‌توان به اکسیژن، کربن،نئون و نیتروژن اشاره نمود.

انرژی ستاره خورشید یکی از منابع عمدهٔ انرژی در منظومه شمسی می‌باشد. طبق آخرین برآوردهای رسمی اعلام شده عمر این منبع انرژی بیش از ۱۴ میلیارد سال می‌باشد. در هر ثانیه ۲/۴ میلیون تن از جرم خورشید به انرژی تبدیل می‌شود. با توجه به جرم خورشید که حدود ۳۳۳ هزار برابر جرم زمین است. این کره نورانی را می‌توان به‌عنوان منبع عظیم انرژی تا ۵ میلیارد سال آینده به حساب آورد.

میزان دما در مرکز خورشید حدود ۱۰ تا ۱۴ میلیون درجه سانتیگراد می‌باشد که از سطح آن با حرارتی نزدیک به ۵۶۰۰ درجه و به صورت امواج الکترو مغناطیسی در فضا منتشر می‌شود.

زمین در فاصله ۱۵۰ میلیون کیلومتری خورشید واقع است و ۸ دقیقه و ۱۸ ثانیه طول می‌کشد تا نور خورشید به زمین برسد؛ بنابراین سهم زمین در دریافت انرژی از خورشید میزان کمی از کل انرژی تابشی آن می‌باشد. سرمنشاء تمام اشکال مختلف انرژیهای شناخته شده تاکنون شامل (سوختهای فسیلی ذخیره شده درزمین، انرژی‌های بادی، آبشارها، امواج دریاها و...) موجود در کره زمین از خورشید می‌باشد.

انرژی خورشید همانند سایر انرژی‌ها بطور مستقیم یا غیر مستقیم می‌تواند به دیگر اشکال انرژی تبدیل شود، همانند گرما و الکتریسیته و... ولیکن موانعی شامل (ضعف علمی و تکنیکی در تبدیل بعلت کمبود دانش و تجربه میدانی - متغیر و متناوب بودن مقدار انرژی به دلیل تغییرات جوی و فصول سال و جهت تابش - محدوده توزیع بسیار وسیع) موجب گردیده تا استفاده کمی از این انرژی صورت گیرد.

استفاده ازمنابع عظیم انرژی خورشید برای تولید انرژی الکتریسته، استفاده دینامیکی، ایجاد گرمایش محوطه‌ها و ساختمانها، خشک کردن تولیدات کشاورزی و تغییرات شیمیایی و... اخیراً شروع گردیده‌است.

انرژی خورشیدی[ویرایش]

انرژی خورشیدی منحصربه‌فردترین منبع انرژی تجدیدپذیر در جهان است و منبع اصلی تمامی انرژی‌های موجود در زمین می‌باشد. انرژی خورشیدی به صورت مستقیم و غیرمستقیم می‌تواند به اشکال دیگر انرژی تبدیل گردد. به‌طور کلی انرژی متصاعد شده از خورشیدی در حدود ۳٫۸ در ۱۰۲۳ کیلووات در ثانیه می‌باشد.

ایران با داشتن حدود ۳۰۰ روز آفتابی در سال جزو بهترین کشورهای دنیا در زمینه پتانسیل انرژی خورشیدی در جهان می‌باشد. با توجه به موقعیت جغرافیای ایران و پراکندگی روستای در کشور، استفاده از انرژی خورشیدی یکی از مهمترین عواملی است که باید مورد توجه قرار گیرد. استفاده از انرژی خورشیدی یکی از بهترین راه‌های برق رسانی و تولید انرژی در مقایسه با دیگر مدل‌های انتقال انرژی به روستاها و نقاط دور افتاده در کشور از نظر هزینه، حمل‌نقل، نگهداری و عوامل مشابه می‌باشد.

با توجه به استانداردهای بین‌المللی اگر میانگین انرژی تابشی خورشید در روز بالاتر از ۳٫۵ کیلووات ساعت در مترمربع (۳۵۰۰ وات/ساعت) باشد استفاده از مدلهای انرژی خورشیدی نظیر کلکتورهای خورشیدی یا سیستم‌های فتوولتائیک بسیار اقتصادی و مقرون به صرفه است.

در بسیاری از قسمتهای ایران انرژی تابشی خورشید بسیار بالاتر از این میانگین بین‌المللی می‌باشد و در برخی از نقاط حتی بالاتر از ۷ تا ۸ کیلو وات ساعت بر مترمربع اندازه‌گیری شده است ولی بطور متوسط انرژی تابشی خورشید بر سطح سرزمین ایران حدود ۴٫۵ کیلو وات ساعت بر مترمربع است.[۱]

تاریخچه[ویرایش]

شناخت انرژی خورشیدی و استفاده از آن برای منظورهای مختلف به زمان ماقبل تاریخ باز می‌گردد. شاید به دوران سفالگری، در آن هنگام روحانیون معابد به کمک جام‌های بزرگ طلائی صیقل داده شده و اشعه خورشید، آتشدان‌های محرابها را روشن می‌کردند. یکی از فراعنه مصر معبدی ساخته بود که با طلوع خورشید درب آن باز و با غروب خورشید درب بسته می‌شد.

ولی مهم‌ترین روایتی که دربارهٔ استفاده از خورشید بیان شده داستان ارشمیدس دانشمند و مخترع بزرگ یونان قدیم می‌باشد که ناوگان روم را با استفاده از انرژی حرارتی خورشید به آتش کشید گفته می‌شود که ارشمیدس با نصب تعداد زیادی آئینه‌های کوچک مربعی شکل در کنار یکدیگر که روی یک پایه متحرک قرار داشته‌است اشعه خورشید را از راه دور روی کشتی‌های رومیان متمرکز ساخته و به این ترتیب آنها را به آتش کشیده‌است. در ایران نیز معماری سنتی ایرانیان باستان نشان دهنده توجه خاص آنان در استفاده صحیح و مؤثر از انرژی خورشید در زمان‌های قدیم بوده‌است.

دانلود فایلپرداخت با کلیه کارتهای عضو شتاب امکان پذیر است.